Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing

Autores
Moguilner, Sebastian Gabriel; Birba, Agustina; Fino, Daniel; Isoardi, Ricardo; Huetagoyena, Celeste; Otoya, Raúl; Tirapu, Viviana; Cremaschi, Fabián; Sedeño, Lucas; Ibáñez, Agustín; García, Adolfo Martín
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types.
Fil: Moguilner, Sebastian Gabriel. University of California; Estados Unidos. Trinity College; Irlanda. Comisión Nacional de Energía Atómica; Argentina
Fil: Birba, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina
Fil: Fino, Daniel. Comisión Nacional de Energía Atómica; Argentina. Fundación Argentina para el Desarrollo en Salud; Argentina
Fil: Isoardi, Ricardo. Comisión Nacional de Energía Atómica; Argentina
Fil: Huetagoyena, Celeste. Clinical Neuroscience; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina
Fil: Otoya, Raúl. Clinical Neuroscience; Argentina
Fil: Tirapu, Viviana. Comisión Nacional de Energía Atómica; Argentina. Clinical Neuroscience; Argentina
Fil: Cremaschi, Fabián. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Medicas. Departamento de Neurociencias; Argentina. Santa Isabel de Hungría Hospital; Argentina
Fil: Sedeño, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina
Fil: Ibáñez, Agustín. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Adolfo Ibañez; Chile
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Universidad de Santiago de Chile; Chile
Materia
COGNITIVE MARKERS
FRONTAL LOBE EPILEPSY
MULTIMODAL NEUROIMAGING, MACHINE LEARNING
NATURALISTIC DISCOURSE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/165294

id CONICETDig_05fa18d99563f8c18daeb844edd6836d
oai_identifier_str oai:ri.conicet.gov.ar:11336/165294
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processingMoguilner, Sebastian GabrielBirba, AgustinaFino, DanielIsoardi, RicardoHuetagoyena, CelesteOtoya, RaúlTirapu, VivianaCremaschi, FabiánSedeño, LucasIbáñez, AgustínGarcía, Adolfo MartínCOGNITIVE MARKERSFRONTAL LOBE EPILEPSYMULTIMODAL NEUROIMAGING, MACHINE LEARNINGNATURALISTIC DISCOURSEhttps://purl.org/becyt/ford/6.2https://purl.org/becyt/ford/6https://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types.Fil: Moguilner, Sebastian Gabriel. University of California; Estados Unidos. Trinity College; Irlanda. Comisión Nacional de Energía Atómica; ArgentinaFil: Birba, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; ArgentinaFil: Fino, Daniel. Comisión Nacional de Energía Atómica; Argentina. Fundación Argentina para el Desarrollo en Salud; ArgentinaFil: Isoardi, Ricardo. Comisión Nacional de Energía Atómica; ArgentinaFil: Huetagoyena, Celeste. Clinical Neuroscience; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; ArgentinaFil: Otoya, Raúl. Clinical Neuroscience; ArgentinaFil: Tirapu, Viviana. Comisión Nacional de Energía Atómica; Argentina. Clinical Neuroscience; ArgentinaFil: Cremaschi, Fabián. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Medicas. Departamento de Neurociencias; Argentina. Santa Isabel de Hungría Hospital; ArgentinaFil: Sedeño, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Ibáñez, Agustín. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Adolfo Ibañez; ChileFil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Universidad de Santiago de Chile; ChileElsevier2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/165294Moguilner, Sebastian Gabriel; Birba, Agustina; Fino, Daniel; Isoardi, Ricardo; Huetagoyena, Celeste; et al.; Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing; Elsevier; Neuroimage; 235; 7-2021; 1-111053-8119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811921002755info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2021.117998info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:27:38Zoai:ri.conicet.gov.ar:11336/165294instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:27:38.706CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing
title Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing
spellingShingle Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing
Moguilner, Sebastian Gabriel
COGNITIVE MARKERS
FRONTAL LOBE EPILEPSY
MULTIMODAL NEUROIMAGING, MACHINE LEARNING
NATURALISTIC DISCOURSE
title_short Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing
title_full Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing
title_fullStr Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing
title_full_unstemmed Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing
title_sort Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing
dc.creator.none.fl_str_mv Moguilner, Sebastian Gabriel
Birba, Agustina
Fino, Daniel
Isoardi, Ricardo
Huetagoyena, Celeste
Otoya, Raúl
Tirapu, Viviana
Cremaschi, Fabián
Sedeño, Lucas
Ibáñez, Agustín
García, Adolfo Martín
author Moguilner, Sebastian Gabriel
author_facet Moguilner, Sebastian Gabriel
Birba, Agustina
Fino, Daniel
Isoardi, Ricardo
Huetagoyena, Celeste
Otoya, Raúl
Tirapu, Viviana
Cremaschi, Fabián
Sedeño, Lucas
Ibáñez, Agustín
García, Adolfo Martín
author_role author
author2 Birba, Agustina
Fino, Daniel
Isoardi, Ricardo
Huetagoyena, Celeste
Otoya, Raúl
Tirapu, Viviana
Cremaschi, Fabián
Sedeño, Lucas
Ibáñez, Agustín
García, Adolfo Martín
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv COGNITIVE MARKERS
FRONTAL LOBE EPILEPSY
MULTIMODAL NEUROIMAGING, MACHINE LEARNING
NATURALISTIC DISCOURSE
topic COGNITIVE MARKERS
FRONTAL LOBE EPILEPSY
MULTIMODAL NEUROIMAGING, MACHINE LEARNING
NATURALISTIC DISCOURSE
purl_subject.fl_str_mv https://purl.org/becyt/ford/6.2
https://purl.org/becyt/ford/6
https://purl.org/becyt/ford/5.1
https://purl.org/becyt/ford/5
dc.description.none.fl_txt_mv The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types.
Fil: Moguilner, Sebastian Gabriel. University of California; Estados Unidos. Trinity College; Irlanda. Comisión Nacional de Energía Atómica; Argentina
Fil: Birba, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina
Fil: Fino, Daniel. Comisión Nacional de Energía Atómica; Argentina. Fundación Argentina para el Desarrollo en Salud; Argentina
Fil: Isoardi, Ricardo. Comisión Nacional de Energía Atómica; Argentina
Fil: Huetagoyena, Celeste. Clinical Neuroscience; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina
Fil: Otoya, Raúl. Clinical Neuroscience; Argentina
Fil: Tirapu, Viviana. Comisión Nacional de Energía Atómica; Argentina. Clinical Neuroscience; Argentina
Fil: Cremaschi, Fabián. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Medicas. Departamento de Neurociencias; Argentina. Santa Isabel de Hungría Hospital; Argentina
Fil: Sedeño, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina
Fil: Ibáñez, Agustín. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Adolfo Ibañez; Chile
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Universidad de Santiago de Chile; Chile
description The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/165294
Moguilner, Sebastian Gabriel; Birba, Agustina; Fino, Daniel; Isoardi, Ricardo; Huetagoyena, Celeste; et al.; Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing; Elsevier; Neuroimage; 235; 7-2021; 1-11
1053-8119
CONICET Digital
CONICET
url http://hdl.handle.net/11336/165294
identifier_str_mv Moguilner, Sebastian Gabriel; Birba, Agustina; Fino, Daniel; Isoardi, Ricardo; Huetagoyena, Celeste; et al.; Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing; Elsevier; Neuroimage; 235; 7-2021; 1-11
1053-8119
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811921002755
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2021.117998
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082733502103552
score 13.22299