Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing
- Autores
- Moguilner, Sebastian Gabriel; Birba, Agustina; Fino, Daniel; Isoardi, Ricardo; Huetagoyena, Celeste; Otoya, Raúl; Tirapu, Viviana; Cremaschi, Fabián; Sedeño, Lucas; Ibáñez, Agustín; García, Adolfo Martín
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types.
Fil: Moguilner, Sebastian Gabriel. University of California; Estados Unidos. Trinity College; Irlanda. Comisión Nacional de Energía Atómica; Argentina
Fil: Birba, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina
Fil: Fino, Daniel. Comisión Nacional de Energía Atómica; Argentina. Fundación Argentina para el Desarrollo en Salud; Argentina
Fil: Isoardi, Ricardo. Comisión Nacional de Energía Atómica; Argentina
Fil: Huetagoyena, Celeste. Clinical Neuroscience; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina
Fil: Otoya, Raúl. Clinical Neuroscience; Argentina
Fil: Tirapu, Viviana. Comisión Nacional de Energía Atómica; Argentina. Clinical Neuroscience; Argentina
Fil: Cremaschi, Fabián. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Medicas. Departamento de Neurociencias; Argentina. Santa Isabel de Hungría Hospital; Argentina
Fil: Sedeño, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina
Fil: Ibáñez, Agustín. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Adolfo Ibañez; Chile
Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Universidad de Santiago de Chile; Chile - Materia
-
COGNITIVE MARKERS
FRONTAL LOBE EPILEPSY
MULTIMODAL NEUROIMAGING, MACHINE LEARNING
NATURALISTIC DISCOURSE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/165294
Ver los metadatos del registro completo
id |
CONICETDig_05fa18d99563f8c18daeb844edd6836d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/165294 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processingMoguilner, Sebastian GabrielBirba, AgustinaFino, DanielIsoardi, RicardoHuetagoyena, CelesteOtoya, RaúlTirapu, VivianaCremaschi, FabiánSedeño, LucasIbáñez, AgustínGarcía, Adolfo MartínCOGNITIVE MARKERSFRONTAL LOBE EPILEPSYMULTIMODAL NEUROIMAGING, MACHINE LEARNINGNATURALISTIC DISCOURSEhttps://purl.org/becyt/ford/6.2https://purl.org/becyt/ford/6https://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types.Fil: Moguilner, Sebastian Gabriel. University of California; Estados Unidos. Trinity College; Irlanda. Comisión Nacional de Energía Atómica; ArgentinaFil: Birba, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; ArgentinaFil: Fino, Daniel. Comisión Nacional de Energía Atómica; Argentina. Fundación Argentina para el Desarrollo en Salud; ArgentinaFil: Isoardi, Ricardo. Comisión Nacional de Energía Atómica; ArgentinaFil: Huetagoyena, Celeste. Clinical Neuroscience; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; ArgentinaFil: Otoya, Raúl. Clinical Neuroscience; ArgentinaFil: Tirapu, Viviana. Comisión Nacional de Energía Atómica; Argentina. Clinical Neuroscience; ArgentinaFil: Cremaschi, Fabián. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Medicas. Departamento de Neurociencias; Argentina. Santa Isabel de Hungría Hospital; ArgentinaFil: Sedeño, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Ibáñez, Agustín. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Adolfo Ibañez; ChileFil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Universidad de Santiago de Chile; ChileElsevier2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/165294Moguilner, Sebastian Gabriel; Birba, Agustina; Fino, Daniel; Isoardi, Ricardo; Huetagoyena, Celeste; et al.; Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing; Elsevier; Neuroimage; 235; 7-2021; 1-111053-8119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811921002755info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2021.117998info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:27:38Zoai:ri.conicet.gov.ar:11336/165294instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:27:38.706CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing |
title |
Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing |
spellingShingle |
Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing Moguilner, Sebastian Gabriel COGNITIVE MARKERS FRONTAL LOBE EPILEPSY MULTIMODAL NEUROIMAGING, MACHINE LEARNING NATURALISTIC DISCOURSE |
title_short |
Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing |
title_full |
Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing |
title_fullStr |
Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing |
title_full_unstemmed |
Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing |
title_sort |
Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing |
dc.creator.none.fl_str_mv |
Moguilner, Sebastian Gabriel Birba, Agustina Fino, Daniel Isoardi, Ricardo Huetagoyena, Celeste Otoya, Raúl Tirapu, Viviana Cremaschi, Fabián Sedeño, Lucas Ibáñez, Agustín García, Adolfo Martín |
author |
Moguilner, Sebastian Gabriel |
author_facet |
Moguilner, Sebastian Gabriel Birba, Agustina Fino, Daniel Isoardi, Ricardo Huetagoyena, Celeste Otoya, Raúl Tirapu, Viviana Cremaschi, Fabián Sedeño, Lucas Ibáñez, Agustín García, Adolfo Martín |
author_role |
author |
author2 |
Birba, Agustina Fino, Daniel Isoardi, Ricardo Huetagoyena, Celeste Otoya, Raúl Tirapu, Viviana Cremaschi, Fabián Sedeño, Lucas Ibáñez, Agustín García, Adolfo Martín |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
COGNITIVE MARKERS FRONTAL LOBE EPILEPSY MULTIMODAL NEUROIMAGING, MACHINE LEARNING NATURALISTIC DISCOURSE |
topic |
COGNITIVE MARKERS FRONTAL LOBE EPILEPSY MULTIMODAL NEUROIMAGING, MACHINE LEARNING NATURALISTIC DISCOURSE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/6.2 https://purl.org/becyt/ford/6 https://purl.org/becyt/ford/5.1 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types. Fil: Moguilner, Sebastian Gabriel. University of California; Estados Unidos. Trinity College; Irlanda. Comisión Nacional de Energía Atómica; Argentina Fil: Birba, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina Fil: Fino, Daniel. Comisión Nacional de Energía Atómica; Argentina. Fundación Argentina para el Desarrollo en Salud; Argentina Fil: Isoardi, Ricardo. Comisión Nacional de Energía Atómica; Argentina Fil: Huetagoyena, Celeste. Clinical Neuroscience; Argentina. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina Fil: Otoya, Raúl. Clinical Neuroscience; Argentina Fil: Tirapu, Viviana. Comisión Nacional de Energía Atómica; Argentina. Clinical Neuroscience; Argentina Fil: Cremaschi, Fabián. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Medicas. Departamento de Neurociencias; Argentina. Santa Isabel de Hungría Hospital; Argentina Fil: Sedeño, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina Fil: Ibáñez, Agustín. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Adolfo Ibañez; Chile Fil: García, Adolfo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of California; Estados Unidos. Trinity College; Irlanda. Universidad de San Andrés; Argentina. Universidad Nacional de Cuyo. Facultad de Educación Elemental y Especial; Argentina. Universidad de Santiago de Chile; Chile |
description |
The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/165294 Moguilner, Sebastian Gabriel; Birba, Agustina; Fino, Daniel; Isoardi, Ricardo; Huetagoyena, Celeste; et al.; Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing; Elsevier; Neuroimage; 235; 7-2021; 1-11 1053-8119 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/165294 |
identifier_str_mv |
Moguilner, Sebastian Gabriel; Birba, Agustina; Fino, Daniel; Isoardi, Ricardo; Huetagoyena, Celeste; et al.; Multimodal neurocognitive markers of frontal lobe epilepsy: insights from ecological text processing; Elsevier; Neuroimage; 235; 7-2021; 1-11 1053-8119 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1053811921002755 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neuroimage.2021.117998 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082733502103552 |
score |
13.22299 |