Symmetry and symmetry breaking for minimizers in the trace inequality
- Autores
- Lami Dozo, Enrique Jose; Torné, Olaf
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C∥u∥^p_L^q(∂B_ρ) ≤∥u∥^p_W1,p(Bρ) in the ball Bρ of radius ρ. When p is fixed minimizers in this problem can be radial or nonradial depending on the parameters q and ρ. We prove that there is a global radial function u0 > 0, with u0 independent of q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ. Next we prove that if either q or ρ is sufficiently large then the minimizers are nonradial. In the case when p = 2 we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and ρ for which radial symmetry breaking occurs.
Fil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Torné, Olaf. No especifíca; - Materia
-
SYMMETRY BREAKING
SOBOLEV TRACE INEQUALITY
NONLINEAR BOUNDARY CONDITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110168
Ver los metadatos del registro completo
id |
CONICETDig_0456959381152dde6a364c331f8ce4ec |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110168 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Symmetry and symmetry breaking for minimizers in the trace inequalityLami Dozo, Enrique JoseTorné, OlafSYMMETRY BREAKINGSOBOLEV TRACE INEQUALITYNONLINEAR BOUNDARY CONDITIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C∥u∥^p_L^q(∂B_ρ) ≤∥u∥^p_W1,p(Bρ) in the ball Bρ of radius ρ. When p is fixed minimizers in this problem can be radial or nonradial depending on the parameters q and ρ. We prove that there is a global radial function u0 > 0, with u0 independent of q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ. Next we prove that if either q or ρ is sufficiently large then the minimizers are nonradial. In the case when p = 2 we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and ρ for which radial symmetry breaking occurs.Fil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Torné, Olaf. No especifíca; World Scientific2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110168Lami Dozo, Enrique Jose; Torné, Olaf; Symmetry and symmetry breaking for minimizers in the trace inequality; World Scientific; Communications In Contemporary Mathematics; 07; 06; 11-2011; 727-7460219-19971793-6683CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219199705001921info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199705001921info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:38Zoai:ri.conicet.gov.ar:11336/110168instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:38.972CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Symmetry and symmetry breaking for minimizers in the trace inequality |
title |
Symmetry and symmetry breaking for minimizers in the trace inequality |
spellingShingle |
Symmetry and symmetry breaking for minimizers in the trace inequality Lami Dozo, Enrique Jose SYMMETRY BREAKING SOBOLEV TRACE INEQUALITY NONLINEAR BOUNDARY CONDITION |
title_short |
Symmetry and symmetry breaking for minimizers in the trace inequality |
title_full |
Symmetry and symmetry breaking for minimizers in the trace inequality |
title_fullStr |
Symmetry and symmetry breaking for minimizers in the trace inequality |
title_full_unstemmed |
Symmetry and symmetry breaking for minimizers in the trace inequality |
title_sort |
Symmetry and symmetry breaking for minimizers in the trace inequality |
dc.creator.none.fl_str_mv |
Lami Dozo, Enrique Jose Torné, Olaf |
author |
Lami Dozo, Enrique Jose |
author_facet |
Lami Dozo, Enrique Jose Torné, Olaf |
author_role |
author |
author2 |
Torné, Olaf |
author2_role |
author |
dc.subject.none.fl_str_mv |
SYMMETRY BREAKING SOBOLEV TRACE INEQUALITY NONLINEAR BOUNDARY CONDITION |
topic |
SYMMETRY BREAKING SOBOLEV TRACE INEQUALITY NONLINEAR BOUNDARY CONDITION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C∥u∥^p_L^q(∂B_ρ) ≤∥u∥^p_W1,p(Bρ) in the ball Bρ of radius ρ. When p is fixed minimizers in this problem can be radial or nonradial depending on the parameters q and ρ. We prove that there is a global radial function u0 > 0, with u0 independent of q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ. Next we prove that if either q or ρ is sufficiently large then the minimizers are nonradial. In the case when p = 2 we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and ρ for which radial symmetry breaking occurs. Fil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Torné, Olaf. No especifíca; |
description |
We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C∥u∥^p_L^q(∂B_ρ) ≤∥u∥^p_W1,p(Bρ) in the ball Bρ of radius ρ. When p is fixed minimizers in this problem can be radial or nonradial depending on the parameters q and ρ. We prove that there is a global radial function u0 > 0, with u0 independent of q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ. Next we prove that if either q or ρ is sufficiently large then the minimizers are nonradial. In the case when p = 2 we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and ρ for which radial symmetry breaking occurs. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110168 Lami Dozo, Enrique Jose; Torné, Olaf; Symmetry and symmetry breaking for minimizers in the trace inequality; World Scientific; Communications In Contemporary Mathematics; 07; 06; 11-2011; 727-746 0219-1997 1793-6683 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110168 |
identifier_str_mv |
Lami Dozo, Enrique Jose; Torné, Olaf; Symmetry and symmetry breaking for minimizers in the trace inequality; World Scientific; Communications In Contemporary Mathematics; 07; 06; 11-2011; 727-746 0219-1997 1793-6683 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219199705001921 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199705001921 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269708645040128 |
score |
13.13397 |