Symmetry and symmetry breaking for minimizers in the trace inequality

Autores
Lami Dozo, Enrique Jose; Torné, Olaf
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C∥u∥^p_L^q(∂B_ρ) ≤∥u∥^p_W1,p(Bρ) in the ball Bρ of radius ρ. When p is fixed minimizers in this problem can be radial or nonradial depending on the parameters q and ρ. We prove that there is a global radial function u0 > 0, with u0 independent of q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ. Next we prove that if either q or ρ is sufficiently large then the minimizers are nonradial. In the case when p = 2 we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and ρ for which radial symmetry breaking occurs.
Fil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Torné, Olaf. No especifíca;
Materia
SYMMETRY BREAKING
SOBOLEV TRACE INEQUALITY
NONLINEAR BOUNDARY CONDITION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/110168

id CONICETDig_0456959381152dde6a364c331f8ce4ec
oai_identifier_str oai:ri.conicet.gov.ar:11336/110168
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Symmetry and symmetry breaking for minimizers in the trace inequalityLami Dozo, Enrique JoseTorné, OlafSYMMETRY BREAKINGSOBOLEV TRACE INEQUALITYNONLINEAR BOUNDARY CONDITIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C∥u∥^p_L^q(∂B_ρ) ≤∥u∥^p_W1,p(Bρ) in the ball Bρ of radius ρ. When p is fixed minimizers in this problem can be radial or nonradial depending on the parameters q and ρ. We prove that there is a global radial function u0 > 0, with u0 independent of q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ. Next we prove that if either q or ρ is sufficiently large then the minimizers are nonradial. In the case when p = 2 we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and ρ for which radial symmetry breaking occurs.Fil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Torné, Olaf. No especifíca; World Scientific2011-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110168Lami Dozo, Enrique Jose; Torné, Olaf; Symmetry and symmetry breaking for minimizers in the trace inequality; World Scientific; Communications In Contemporary Mathematics; 07; 06; 11-2011; 727-7460219-19971793-6683CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219199705001921info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199705001921info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:38Zoai:ri.conicet.gov.ar:11336/110168instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:38.972CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Symmetry and symmetry breaking for minimizers in the trace inequality
title Symmetry and symmetry breaking for minimizers in the trace inequality
spellingShingle Symmetry and symmetry breaking for minimizers in the trace inequality
Lami Dozo, Enrique Jose
SYMMETRY BREAKING
SOBOLEV TRACE INEQUALITY
NONLINEAR BOUNDARY CONDITION
title_short Symmetry and symmetry breaking for minimizers in the trace inequality
title_full Symmetry and symmetry breaking for minimizers in the trace inequality
title_fullStr Symmetry and symmetry breaking for minimizers in the trace inequality
title_full_unstemmed Symmetry and symmetry breaking for minimizers in the trace inequality
title_sort Symmetry and symmetry breaking for minimizers in the trace inequality
dc.creator.none.fl_str_mv Lami Dozo, Enrique Jose
Torné, Olaf
author Lami Dozo, Enrique Jose
author_facet Lami Dozo, Enrique Jose
Torné, Olaf
author_role author
author2 Torné, Olaf
author2_role author
dc.subject.none.fl_str_mv SYMMETRY BREAKING
SOBOLEV TRACE INEQUALITY
NONLINEAR BOUNDARY CONDITION
topic SYMMETRY BREAKING
SOBOLEV TRACE INEQUALITY
NONLINEAR BOUNDARY CONDITION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C∥u∥^p_L^q(∂B_ρ) ≤∥u∥^p_W1,p(Bρ) in the ball Bρ of radius ρ. When p is fixed minimizers in this problem can be radial or nonradial depending on the parameters q and ρ. We prove that there is a global radial function u0 > 0, with u0 independent of q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ. Next we prove that if either q or ρ is sufficiently large then the minimizers are nonradial. In the case when p = 2 we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and ρ for which radial symmetry breaking occurs.
Fil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Torné, Olaf. No especifíca;
description We consider symmetry properties of minimizers in the variational characterization of the best constant in the trace inequality C∥u∥^p_L^q(∂B_ρ) ≤∥u∥^p_W1,p(Bρ) in the ball Bρ of radius ρ. When p is fixed minimizers in this problem can be radial or nonradial depending on the parameters q and ρ. We prove that there is a global radial function u0 > 0, with u0 independent of q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ. Next we prove that if either q or ρ is sufficiently large then the minimizers are nonradial. In the case when p = 2 we consider a generalization of the minimization problem and improve some of the above symmetry results. We also present some numerical results describing the exact values of q and ρ for which radial symmetry breaking occurs.
publishDate 2011
dc.date.none.fl_str_mv 2011-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/110168
Lami Dozo, Enrique Jose; Torné, Olaf; Symmetry and symmetry breaking for minimizers in the trace inequality; World Scientific; Communications In Contemporary Mathematics; 07; 06; 11-2011; 727-746
0219-1997
1793-6683
CONICET Digital
CONICET
url http://hdl.handle.net/11336/110168
identifier_str_mv Lami Dozo, Enrique Jose; Torné, Olaf; Symmetry and symmetry breaking for minimizers in the trace inequality; World Scientific; Communications In Contemporary Mathematics; 07; 06; 11-2011; 727-746
0219-1997
1793-6683
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219199705001921
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199705001921
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269708645040128
score 13.13397