Best Simultaneous Monotone Approximants in Orlicz Spaces
- Autores
- Levis, Fabián Eduardo; Marano, M.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants.
Fil: Levis, Fabián Eduardo. Universidad Nacional de Rio Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marano, M.. Universidad de Jaén; España - Materia
-
Simultaneous Approximation
Monotone Approximation
Orlicz Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22111
Ver los metadatos del registro completo
id |
CONICETDig_0355ecb932995c79ac221a8fb95bfe76 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22111 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Best Simultaneous Monotone Approximants in Orlicz SpacesLevis, Fabián EduardoMarano, M.Simultaneous ApproximationMonotone ApproximationOrlicz Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants.Fil: Levis, Fabián Eduardo. Universidad Nacional de Rio Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marano, M.. Universidad de Jaén; EspañaTaylor & Francis2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22111Levis, Fabián Eduardo; Marano, M.; Best Simultaneous Monotone Approximants in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 34; 1; 1-2013; 16-350163-0563CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2012.706770info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2012.706770info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:00Zoai:ri.conicet.gov.ar:11336/22111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:00.587CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Best Simultaneous Monotone Approximants in Orlicz Spaces |
title |
Best Simultaneous Monotone Approximants in Orlicz Spaces |
spellingShingle |
Best Simultaneous Monotone Approximants in Orlicz Spaces Levis, Fabián Eduardo Simultaneous Approximation Monotone Approximation Orlicz Spaces |
title_short |
Best Simultaneous Monotone Approximants in Orlicz Spaces |
title_full |
Best Simultaneous Monotone Approximants in Orlicz Spaces |
title_fullStr |
Best Simultaneous Monotone Approximants in Orlicz Spaces |
title_full_unstemmed |
Best Simultaneous Monotone Approximants in Orlicz Spaces |
title_sort |
Best Simultaneous Monotone Approximants in Orlicz Spaces |
dc.creator.none.fl_str_mv |
Levis, Fabián Eduardo Marano, M. |
author |
Levis, Fabián Eduardo |
author_facet |
Levis, Fabián Eduardo Marano, M. |
author_role |
author |
author2 |
Marano, M. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Simultaneous Approximation Monotone Approximation Orlicz Spaces |
topic |
Simultaneous Approximation Monotone Approximation Orlicz Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants. Fil: Levis, Fabián Eduardo. Universidad Nacional de Rio Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Marano, M.. Universidad de Jaén; España |
description |
Let f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22111 Levis, Fabián Eduardo; Marano, M.; Best Simultaneous Monotone Approximants in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 34; 1; 1-2013; 16-35 0163-0563 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22111 |
identifier_str_mv |
Levis, Fabián Eduardo; Marano, M.; Best Simultaneous Monotone Approximants in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 34; 1; 1-2013; 16-35 0163-0563 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2012.706770 info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2012.706770 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269494769090560 |
score |
13.13397 |