Best Simultaneous Monotone Approximants in Orlicz Spaces

Autores
Levis, Fabián Eduardo; Marano, M.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants.
Fil: Levis, Fabián Eduardo. Universidad Nacional de Rio Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marano, M.. Universidad de Jaén; España
Materia
Simultaneous Approximation
Monotone Approximation
Orlicz Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22111

id CONICETDig_0355ecb932995c79ac221a8fb95bfe76
oai_identifier_str oai:ri.conicet.gov.ar:11336/22111
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Best Simultaneous Monotone Approximants in Orlicz SpacesLevis, Fabián EduardoMarano, M.Simultaneous ApproximationMonotone ApproximationOrlicz Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants.Fil: Levis, Fabián Eduardo. Universidad Nacional de Rio Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marano, M.. Universidad de Jaén; EspañaTaylor & Francis2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22111Levis, Fabián Eduardo; Marano, M.; Best Simultaneous Monotone Approximants in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 34; 1; 1-2013; 16-350163-0563CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2012.706770info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2012.706770info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:00Zoai:ri.conicet.gov.ar:11336/22111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:00.587CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Best Simultaneous Monotone Approximants in Orlicz Spaces
title Best Simultaneous Monotone Approximants in Orlicz Spaces
spellingShingle Best Simultaneous Monotone Approximants in Orlicz Spaces
Levis, Fabián Eduardo
Simultaneous Approximation
Monotone Approximation
Orlicz Spaces
title_short Best Simultaneous Monotone Approximants in Orlicz Spaces
title_full Best Simultaneous Monotone Approximants in Orlicz Spaces
title_fullStr Best Simultaneous Monotone Approximants in Orlicz Spaces
title_full_unstemmed Best Simultaneous Monotone Approximants in Orlicz Spaces
title_sort Best Simultaneous Monotone Approximants in Orlicz Spaces
dc.creator.none.fl_str_mv Levis, Fabián Eduardo
Marano, M.
author Levis, Fabián Eduardo
author_facet Levis, Fabián Eduardo
Marano, M.
author_role author
author2 Marano, M.
author2_role author
dc.subject.none.fl_str_mv Simultaneous Approximation
Monotone Approximation
Orlicz Spaces
topic Simultaneous Approximation
Monotone Approximation
Orlicz Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants.
Fil: Levis, Fabián Eduardo. Universidad Nacional de Rio Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marano, M.. Universidad de Jaén; España
description Let f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22111
Levis, Fabián Eduardo; Marano, M.; Best Simultaneous Monotone Approximants in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 34; 1; 1-2013; 16-35
0163-0563
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22111
identifier_str_mv Levis, Fabián Eduardo; Marano, M.; Best Simultaneous Monotone Approximants in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 34; 1; 1-2013; 16-35
0163-0563
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2012.706770
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2012.706770
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269494769090560
score 13.13397