Non-Markovian model for the study of pitting corrosion in a water pipe system

Autores
Rosa, A. C. P.; Vaveliuk, Pablo; Moret, M. A.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The main studies on pitting consist in proposing Markovian stochastic models, based on the statistics of extreme values and focused on growing the depth of wells, especially the deepest one. We show that a non-Markovian model, described by a nonlinear Fokker–Planck (nFP) equation, properly depicts the time evolution of a distribution of depth values of pits that were experimentally obtained. The solution of this equation in a steady-state regime is a q-Gaussian distribution, i.e. a long-tail probability distribution that is the main characteristic of a nonextensive statistical mechanics. The proposed model, that is applied to data from four inspections conducted on a section of a line of regular water service in power water reactor (PWR) nuclear power plants, is in agreement with experimental results.
Fil: Rosa, A. C. P.. Universidade Federal do Oeste da Bahia; Brasil. SENAI Cimatec; Brasil
Fil: Vaveliuk, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Moret, M. A.. SENAI Cimatec; Brasil. Universidade do Estado da Bahia; Brasil
Materia
Pitting
Non-Markovian
Nonlinear Fokker–Planck Equation
Tsallis Statistics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11809

id CONICETDig_0327601fcdbce7c44cfcf44d869c1ec1
oai_identifier_str oai:ri.conicet.gov.ar:11336/11809
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-Markovian model for the study of pitting corrosion in a water pipe systemRosa, A. C. P.Vaveliuk, PabloMoret, M. A.PittingNon-MarkovianNonlinear Fokker–Planck EquationTsallis Statisticshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The main studies on pitting consist in proposing Markovian stochastic models, based on the statistics of extreme values and focused on growing the depth of wells, especially the deepest one. We show that a non-Markovian model, described by a nonlinear Fokker–Planck (nFP) equation, properly depicts the time evolution of a distribution of depth values of pits that were experimentally obtained. The solution of this equation in a steady-state regime is a q-Gaussian distribution, i.e. a long-tail probability distribution that is the main characteristic of a nonextensive statistical mechanics. The proposed model, that is applied to data from four inspections conducted on a section of a line of regular water service in power water reactor (PWR) nuclear power plants, is in agreement with experimental results.Fil: Rosa, A. C. P.. Universidade Federal do Oeste da Bahia; Brasil. SENAI Cimatec; BrasilFil: Vaveliuk, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Moret, M. A.. SENAI Cimatec; Brasil. Universidade do Estado da Bahia; BrasilWorld Scientific2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11809Rosa, A. C. P.; Vaveliuk, Pablo; Moret, M. A.; Non-Markovian model for the study of pitting corrosion in a water pipe system; World Scientific; International Journal Of Modern Physics C; 26; 10; 10-2015; 15501190129-1831enginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0129183115501193info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129183115501193info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:59:02Zoai:ri.conicet.gov.ar:11336/11809instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:59:02.913CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-Markovian model for the study of pitting corrosion in a water pipe system
title Non-Markovian model for the study of pitting corrosion in a water pipe system
spellingShingle Non-Markovian model for the study of pitting corrosion in a water pipe system
Rosa, A. C. P.
Pitting
Non-Markovian
Nonlinear Fokker–Planck Equation
Tsallis Statistics
title_short Non-Markovian model for the study of pitting corrosion in a water pipe system
title_full Non-Markovian model for the study of pitting corrosion in a water pipe system
title_fullStr Non-Markovian model for the study of pitting corrosion in a water pipe system
title_full_unstemmed Non-Markovian model for the study of pitting corrosion in a water pipe system
title_sort Non-Markovian model for the study of pitting corrosion in a water pipe system
dc.creator.none.fl_str_mv Rosa, A. C. P.
Vaveliuk, Pablo
Moret, M. A.
author Rosa, A. C. P.
author_facet Rosa, A. C. P.
Vaveliuk, Pablo
Moret, M. A.
author_role author
author2 Vaveliuk, Pablo
Moret, M. A.
author2_role author
author
dc.subject.none.fl_str_mv Pitting
Non-Markovian
Nonlinear Fokker–Planck Equation
Tsallis Statistics
topic Pitting
Non-Markovian
Nonlinear Fokker–Planck Equation
Tsallis Statistics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The main studies on pitting consist in proposing Markovian stochastic models, based on the statistics of extreme values and focused on growing the depth of wells, especially the deepest one. We show that a non-Markovian model, described by a nonlinear Fokker–Planck (nFP) equation, properly depicts the time evolution of a distribution of depth values of pits that were experimentally obtained. The solution of this equation in a steady-state regime is a q-Gaussian distribution, i.e. a long-tail probability distribution that is the main characteristic of a nonextensive statistical mechanics. The proposed model, that is applied to data from four inspections conducted on a section of a line of regular water service in power water reactor (PWR) nuclear power plants, is in agreement with experimental results.
Fil: Rosa, A. C. P.. Universidade Federal do Oeste da Bahia; Brasil. SENAI Cimatec; Brasil
Fil: Vaveliuk, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones Opticas (i); Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Moret, M. A.. SENAI Cimatec; Brasil. Universidade do Estado da Bahia; Brasil
description The main studies on pitting consist in proposing Markovian stochastic models, based on the statistics of extreme values and focused on growing the depth of wells, especially the deepest one. We show that a non-Markovian model, described by a nonlinear Fokker–Planck (nFP) equation, properly depicts the time evolution of a distribution of depth values of pits that were experimentally obtained. The solution of this equation in a steady-state regime is a q-Gaussian distribution, i.e. a long-tail probability distribution that is the main characteristic of a nonextensive statistical mechanics. The proposed model, that is applied to data from four inspections conducted on a section of a line of regular water service in power water reactor (PWR) nuclear power plants, is in agreement with experimental results.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11809
Rosa, A. C. P.; Vaveliuk, Pablo; Moret, M. A.; Non-Markovian model for the study of pitting corrosion in a water pipe system; World Scientific; International Journal Of Modern Physics C; 26; 10; 10-2015; 1550119
0129-1831
url http://hdl.handle.net/11336/11809
identifier_str_mv Rosa, A. C. P.; Vaveliuk, Pablo; Moret, M. A.; Non-Markovian model for the study of pitting corrosion in a water pipe system; World Scientific; International Journal Of Modern Physics C; 26; 10; 10-2015; 1550119
0129-1831
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0129183115501193
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0129183115501193
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1849873294219542528
score 13.011256