The Maslov index and some applications to dispersion relations in curved space times
- Autores
- Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of the present work is to generalize the results given in Osorio Morales and Santillán [Eur. Phys. J. C 82, 353 (2022)] to a generic situation for causal geodesics. It is argued that these results may be of interest for causality issues. Recall that the presence of superluminal signals in a generic space time (M, gμν) does not necessarily imply violations of the principle of causality {[G. M. Shore, Nucl. Phys. B 778, 219 (2007)] and [T. J. Hollowood and G. M. Shore, Phys. Lett. B 655, 67 (2007)]}. In flat spaces, global Lorenz invariance leads to the conclusion that closed time-like curves appear if these signals are present. In a curved space instead, there is only local Poincare invariance, and the presence of closed causal curves may be avoided even in the presence of a superluminal mode, especially when terms violating the strong equivalence principle appear in the action. This implies that the standard analytic properties of the spectral components of these functions are therefore modified, and in particular, the refraction index n(ω) is not analytic in the upper complex ω plane. The emergence of these singularities may also take place for non-superluminal signals due to the breaking of global Lorenz invariance in a generic space time. In the present work, it is argued that the homotopy properties of the Maslov index are useful for studying how the singularities of n(ω) vary when moving along a geodesic congruence. In addition, several conclusions obtained in Shore [Nucl. Phys. B 778, 219 (2007)] and Hollowood and Shore [Phys. Lett. B 655, 67 (2007)] are based on the Penrose limit along a null geodesic, and they are restricted to GR with matter satisfying strong energy conditions. The use of the Maslov index may allow a more intrinsic description of singularities, not relying on that limit, and a generalization of these results about non-analyticity to generic gravity models with general matter content.
Fil: Osorio Morales, Maria Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
MASLOV
INDEX
CONJUGATE
POINTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231420
Ver los metadatos del registro completo
| id |
CONICETDig_028d01f6d35adea4e4165056f2896a34 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231420 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The Maslov index and some applications to dispersion relations in curved space timesOsorio Morales, Maria JulianaSantillán, Osvaldo PabloMASLOVINDEXCONJUGATEPOINTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of the present work is to generalize the results given in Osorio Morales and Santillán [Eur. Phys. J. C 82, 353 (2022)] to a generic situation for causal geodesics. It is argued that these results may be of interest for causality issues. Recall that the presence of superluminal signals in a generic space time (M, gμν) does not necessarily imply violations of the principle of causality {[G. M. Shore, Nucl. Phys. B 778, 219 (2007)] and [T. J. Hollowood and G. M. Shore, Phys. Lett. B 655, 67 (2007)]}. In flat spaces, global Lorenz invariance leads to the conclusion that closed time-like curves appear if these signals are present. In a curved space instead, there is only local Poincare invariance, and the presence of closed causal curves may be avoided even in the presence of a superluminal mode, especially when terms violating the strong equivalence principle appear in the action. This implies that the standard analytic properties of the spectral components of these functions are therefore modified, and in particular, the refraction index n(ω) is not analytic in the upper complex ω plane. The emergence of these singularities may also take place for non-superluminal signals due to the breaking of global Lorenz invariance in a generic space time. In the present work, it is argued that the homotopy properties of the Maslov index are useful for studying how the singularities of n(ω) vary when moving along a geodesic congruence. In addition, several conclusions obtained in Shore [Nucl. Phys. B 778, 219 (2007)] and Hollowood and Shore [Phys. Lett. B 655, 67 (2007)] are based on the Penrose limit along a null geodesic, and they are restricted to GR with matter satisfying strong energy conditions. The use of the Maslov index may allow a more intrinsic description of singularities, not relying on that limit, and a generalization of these results about non-analyticity to generic gravity models with general matter content.Fil: Osorio Morales, Maria Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Institute of Physics2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231420Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The Maslov index and some applications to dispersion relations in curved space times; American Institute of Physics; Journal of Mathematical Physics; 64; 6; 6-2023; 1-330022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0146979info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:00:49Zoai:ri.conicet.gov.ar:11336/231420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:00:49.388CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The Maslov index and some applications to dispersion relations in curved space times |
| title |
The Maslov index and some applications to dispersion relations in curved space times |
| spellingShingle |
The Maslov index and some applications to dispersion relations in curved space times Osorio Morales, Maria Juliana MASLOV INDEX CONJUGATE POINTS |
| title_short |
The Maslov index and some applications to dispersion relations in curved space times |
| title_full |
The Maslov index and some applications to dispersion relations in curved space times |
| title_fullStr |
The Maslov index and some applications to dispersion relations in curved space times |
| title_full_unstemmed |
The Maslov index and some applications to dispersion relations in curved space times |
| title_sort |
The Maslov index and some applications to dispersion relations in curved space times |
| dc.creator.none.fl_str_mv |
Osorio Morales, Maria Juliana Santillán, Osvaldo Pablo |
| author |
Osorio Morales, Maria Juliana |
| author_facet |
Osorio Morales, Maria Juliana Santillán, Osvaldo Pablo |
| author_role |
author |
| author2 |
Santillán, Osvaldo Pablo |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
MASLOV INDEX CONJUGATE POINTS |
| topic |
MASLOV INDEX CONJUGATE POINTS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The aim of the present work is to generalize the results given in Osorio Morales and Santillán [Eur. Phys. J. C 82, 353 (2022)] to a generic situation for causal geodesics. It is argued that these results may be of interest for causality issues. Recall that the presence of superluminal signals in a generic space time (M, gμν) does not necessarily imply violations of the principle of causality {[G. M. Shore, Nucl. Phys. B 778, 219 (2007)] and [T. J. Hollowood and G. M. Shore, Phys. Lett. B 655, 67 (2007)]}. In flat spaces, global Lorenz invariance leads to the conclusion that closed time-like curves appear if these signals are present. In a curved space instead, there is only local Poincare invariance, and the presence of closed causal curves may be avoided even in the presence of a superluminal mode, especially when terms violating the strong equivalence principle appear in the action. This implies that the standard analytic properties of the spectral components of these functions are therefore modified, and in particular, the refraction index n(ω) is not analytic in the upper complex ω plane. The emergence of these singularities may also take place for non-superluminal signals due to the breaking of global Lorenz invariance in a generic space time. In the present work, it is argued that the homotopy properties of the Maslov index are useful for studying how the singularities of n(ω) vary when moving along a geodesic congruence. In addition, several conclusions obtained in Shore [Nucl. Phys. B 778, 219 (2007)] and Hollowood and Shore [Phys. Lett. B 655, 67 (2007)] are based on the Penrose limit along a null geodesic, and they are restricted to GR with matter satisfying strong energy conditions. The use of the Maslov index may allow a more intrinsic description of singularities, not relying on that limit, and a generalization of these results about non-analyticity to generic gravity models with general matter content. Fil: Osorio Morales, Maria Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
The aim of the present work is to generalize the results given in Osorio Morales and Santillán [Eur. Phys. J. C 82, 353 (2022)] to a generic situation for causal geodesics. It is argued that these results may be of interest for causality issues. Recall that the presence of superluminal signals in a generic space time (M, gμν) does not necessarily imply violations of the principle of causality {[G. M. Shore, Nucl. Phys. B 778, 219 (2007)] and [T. J. Hollowood and G. M. Shore, Phys. Lett. B 655, 67 (2007)]}. In flat spaces, global Lorenz invariance leads to the conclusion that closed time-like curves appear if these signals are present. In a curved space instead, there is only local Poincare invariance, and the presence of closed causal curves may be avoided even in the presence of a superluminal mode, especially when terms violating the strong equivalence principle appear in the action. This implies that the standard analytic properties of the spectral components of these functions are therefore modified, and in particular, the refraction index n(ω) is not analytic in the upper complex ω plane. The emergence of these singularities may also take place for non-superluminal signals due to the breaking of global Lorenz invariance in a generic space time. In the present work, it is argued that the homotopy properties of the Maslov index are useful for studying how the singularities of n(ω) vary when moving along a geodesic congruence. In addition, several conclusions obtained in Shore [Nucl. Phys. B 778, 219 (2007)] and Hollowood and Shore [Phys. Lett. B 655, 67 (2007)] are based on the Penrose limit along a null geodesic, and they are restricted to GR with matter satisfying strong energy conditions. The use of the Maslov index may allow a more intrinsic description of singularities, not relying on that limit, and a generalization of these results about non-analyticity to generic gravity models with general matter content. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231420 Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The Maslov index and some applications to dispersion relations in curved space times; American Institute of Physics; Journal of Mathematical Physics; 64; 6; 6-2023; 1-33 0022-2488 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/231420 |
| identifier_str_mv |
Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The Maslov index and some applications to dispersion relations in curved space times; American Institute of Physics; Journal of Mathematical Physics; 64; 6; 6-2023; 1-33 0022-2488 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0146979 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Institute of Physics |
| publisher.none.fl_str_mv |
American Institute of Physics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781177321488384 |
| score |
12.982451 |