The number of reducible space curves over a finite field

Autores
Cesaratto, Eda; Von zur Gathen, Joachim; Matera, Guillermo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
"Most" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.
Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Von zur Gathen, Joachim. No especifíca;
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
FINITE FIELDS
RATIONAL POINTS
ALGEBRAIC CURVES
ASYMPTOTIC BEHAVIOR
CHOW VARIETY
IRREDUCIBILITY
ABSOLUTE IRREDUCIBILITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/197670

id CONICETDig_b7d22ff9a42e30ffbc93380ed8465adb
oai_identifier_str oai:ri.conicet.gov.ar:11336/197670
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The number of reducible space curves over a finite fieldCesaratto, EdaVon zur Gathen, JoachimMatera, GuillermoFINITE FIELDSRATIONAL POINTSALGEBRAIC CURVESASYMPTOTIC BEHAVIORCHOW VARIETYIRREDUCIBILITYABSOLUTE IRREDUCIBILITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1"Most" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Von zur Gathen, Joachim. No especifíca;Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/197670Cesaratto, Eda; Von zur Gathen, Joachim; Matera, Guillermo; The number of reducible space curves over a finite field; Academic Press Inc Elsevier Science; Journal Of Number Theory; 133; 4; 9-2012; 1409-14340022-314XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnt.2012.08.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:21Zoai:ri.conicet.gov.ar:11336/197670instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:21.428CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The number of reducible space curves over a finite field
title The number of reducible space curves over a finite field
spellingShingle The number of reducible space curves over a finite field
Cesaratto, Eda
FINITE FIELDS
RATIONAL POINTS
ALGEBRAIC CURVES
ASYMPTOTIC BEHAVIOR
CHOW VARIETY
IRREDUCIBILITY
ABSOLUTE IRREDUCIBILITY
title_short The number of reducible space curves over a finite field
title_full The number of reducible space curves over a finite field
title_fullStr The number of reducible space curves over a finite field
title_full_unstemmed The number of reducible space curves over a finite field
title_sort The number of reducible space curves over a finite field
dc.creator.none.fl_str_mv Cesaratto, Eda
Von zur Gathen, Joachim
Matera, Guillermo
author Cesaratto, Eda
author_facet Cesaratto, Eda
Von zur Gathen, Joachim
Matera, Guillermo
author_role author
author2 Von zur Gathen, Joachim
Matera, Guillermo
author2_role author
author
dc.subject.none.fl_str_mv FINITE FIELDS
RATIONAL POINTS
ALGEBRAIC CURVES
ASYMPTOTIC BEHAVIOR
CHOW VARIETY
IRREDUCIBILITY
ABSOLUTE IRREDUCIBILITY
topic FINITE FIELDS
RATIONAL POINTS
ALGEBRAIC CURVES
ASYMPTOTIC BEHAVIOR
CHOW VARIETY
IRREDUCIBILITY
ABSOLUTE IRREDUCIBILITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv "Most" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.
Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Von zur Gathen, Joachim. No especifíca;
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description "Most" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/197670
Cesaratto, Eda; Von zur Gathen, Joachim; Matera, Guillermo; The number of reducible space curves over a finite field; Academic Press Inc Elsevier Science; Journal Of Number Theory; 133; 4; 9-2012; 1409-1434
0022-314X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/197670
identifier_str_mv Cesaratto, Eda; Von zur Gathen, Joachim; Matera, Guillermo; The number of reducible space curves over a finite field; Academic Press Inc Elsevier Science; Journal Of Number Theory; 133; 4; 9-2012; 1409-1434
0022-314X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnt.2012.08.027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613551857074176
score 13.070432