The number of reducible space curves over a finite field
- Autores
- Cesaratto, Eda; Von zur Gathen, Joachim; Matera, Guillermo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- "Most" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.
Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Von zur Gathen, Joachim. No especifíca;
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FINITE FIELDS
RATIONAL POINTS
ALGEBRAIC CURVES
ASYMPTOTIC BEHAVIOR
CHOW VARIETY
IRREDUCIBILITY
ABSOLUTE IRREDUCIBILITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/197670
Ver los metadatos del registro completo
| id |
CONICETDig_b7d22ff9a42e30ffbc93380ed8465adb |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/197670 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The number of reducible space curves over a finite fieldCesaratto, EdaVon zur Gathen, JoachimMatera, GuillermoFINITE FIELDSRATIONAL POINTSALGEBRAIC CURVESASYMPTOTIC BEHAVIORCHOW VARIETYIRREDUCIBILITYABSOLUTE IRREDUCIBILITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1"Most" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible.Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Von zur Gathen, Joachim. No especifíca;Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/197670Cesaratto, Eda; Von zur Gathen, Joachim; Matera, Guillermo; The number of reducible space curves over a finite field; Academic Press Inc Elsevier Science; Journal Of Number Theory; 133; 4; 9-2012; 1409-14340022-314XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnt.2012.08.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:19:41Zoai:ri.conicet.gov.ar:11336/197670instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:19:41.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The number of reducible space curves over a finite field |
| title |
The number of reducible space curves over a finite field |
| spellingShingle |
The number of reducible space curves over a finite field Cesaratto, Eda FINITE FIELDS RATIONAL POINTS ALGEBRAIC CURVES ASYMPTOTIC BEHAVIOR CHOW VARIETY IRREDUCIBILITY ABSOLUTE IRREDUCIBILITY |
| title_short |
The number of reducible space curves over a finite field |
| title_full |
The number of reducible space curves over a finite field |
| title_fullStr |
The number of reducible space curves over a finite field |
| title_full_unstemmed |
The number of reducible space curves over a finite field |
| title_sort |
The number of reducible space curves over a finite field |
| dc.creator.none.fl_str_mv |
Cesaratto, Eda Von zur Gathen, Joachim Matera, Guillermo |
| author |
Cesaratto, Eda |
| author_facet |
Cesaratto, Eda Von zur Gathen, Joachim Matera, Guillermo |
| author_role |
author |
| author2 |
Von zur Gathen, Joachim Matera, Guillermo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
FINITE FIELDS RATIONAL POINTS ALGEBRAIC CURVES ASYMPTOTIC BEHAVIOR CHOW VARIETY IRREDUCIBILITY ABSOLUTE IRREDUCIBILITY |
| topic |
FINITE FIELDS RATIONAL POINTS ALGEBRAIC CURVES ASYMPTOTIC BEHAVIOR CHOW VARIETY IRREDUCIBILITY ABSOLUTE IRREDUCIBILITY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
"Most" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible. Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Von zur Gathen, Joachim. No especifíca; Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento. Instituto del Desarrollo Humano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
"Most" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropriate Chow variety, and provides bounds on the probability that a random curve over a finite field is reducible. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/197670 Cesaratto, Eda; Von zur Gathen, Joachim; Matera, Guillermo; The number of reducible space curves over a finite field; Academic Press Inc Elsevier Science; Journal Of Number Theory; 133; 4; 9-2012; 1409-1434 0022-314X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/197670 |
| identifier_str_mv |
Cesaratto, Eda; Von zur Gathen, Joachim; Matera, Guillermo; The number of reducible space curves over a finite field; Academic Press Inc Elsevier Science; Journal Of Number Theory; 133; 4; 9-2012; 1409-1434 0022-314X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnt.2012.08.027 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781677031915520 |
| score |
12.982451 |