Heegner Points on Cartan Non-split Curves
- Autores
- Kohen, Daniel; Pacetti, Ariel Martín
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Cartan curves
Heegner points - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19890
Ver los metadatos del registro completo
id |
CONICETDig_4b4091ff24baa89d7915308f9c913064 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19890 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Heegner Points on Cartan Non-split CurvesKohen, DanielPacetti, Ariel MartínCartan curvesHeegner pointshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaCanadian Mathematical Soc2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19890Kohen, Daniel; Pacetti, Ariel Martín; Heegner Points on Cartan Non-split Curves; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 68; 2; 4-2016; 422-4440008-414X1496-4279CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4153/CJM-2015-047-6info:eu-repo/semantics/altIdentifier/url/https://cms.math.ca/10.4153/CJM-2015-047-6info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.7801info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:36:05Zoai:ri.conicet.gov.ar:11336/19890instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:36:05.372CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Heegner Points on Cartan Non-split Curves |
title |
Heegner Points on Cartan Non-split Curves |
spellingShingle |
Heegner Points on Cartan Non-split Curves Kohen, Daniel Cartan curves Heegner points |
title_short |
Heegner Points on Cartan Non-split Curves |
title_full |
Heegner Points on Cartan Non-split Curves |
title_fullStr |
Heegner Points on Cartan Non-split Curves |
title_full_unstemmed |
Heegner Points on Cartan Non-split Curves |
title_sort |
Heegner Points on Cartan Non-split Curves |
dc.creator.none.fl_str_mv |
Kohen, Daniel Pacetti, Ariel Martín |
author |
Kohen, Daniel |
author_facet |
Kohen, Daniel Pacetti, Ariel Martín |
author_role |
author |
author2 |
Pacetti, Ariel Martín |
author2_role |
author |
dc.subject.none.fl_str_mv |
Cartan curves Heegner points |
topic |
Cartan curves Heegner points |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case. Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19890 Kohen, Daniel; Pacetti, Ariel Martín; Heegner Points on Cartan Non-split Curves; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 68; 2; 4-2016; 422-444 0008-414X 1496-4279 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19890 |
identifier_str_mv |
Kohen, Daniel; Pacetti, Ariel Martín; Heegner Points on Cartan Non-split Curves; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 68; 2; 4-2016; 422-444 0008-414X 1496-4279 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4153/CJM-2015-047-6 info:eu-repo/semantics/altIdentifier/url/https://cms.math.ca/10.4153/CJM-2015-047-6 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.7801 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Canadian Mathematical Soc |
publisher.none.fl_str_mv |
Canadian Mathematical Soc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606719068897280 |
score |
13.000565 |