Heegner Points on Cartan Non-split Curves

Autores
Kohen, Daniel; Pacetti, Ariel Martín
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Cartan curves
Heegner points
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19890

id CONICETDig_4b4091ff24baa89d7915308f9c913064
oai_identifier_str oai:ri.conicet.gov.ar:11336/19890
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Heegner Points on Cartan Non-split CurvesKohen, DanielPacetti, Ariel MartínCartan curvesHeegner pointshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaCanadian Mathematical Soc2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19890Kohen, Daniel; Pacetti, Ariel Martín; Heegner Points on Cartan Non-split Curves; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 68; 2; 4-2016; 422-4440008-414X1496-4279CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4153/CJM-2015-047-6info:eu-repo/semantics/altIdentifier/url/https://cms.math.ca/10.4153/CJM-2015-047-6info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.7801info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:36:05Zoai:ri.conicet.gov.ar:11336/19890instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:36:05.372CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Heegner Points on Cartan Non-split Curves
title Heegner Points on Cartan Non-split Curves
spellingShingle Heegner Points on Cartan Non-split Curves
Kohen, Daniel
Cartan curves
Heegner points
title_short Heegner Points on Cartan Non-split Curves
title_full Heegner Points on Cartan Non-split Curves
title_fullStr Heegner Points on Cartan Non-split Curves
title_full_unstemmed Heegner Points on Cartan Non-split Curves
title_sort Heegner Points on Cartan Non-split Curves
dc.creator.none.fl_str_mv Kohen, Daniel
Pacetti, Ariel Martín
author Kohen, Daniel
author_facet Kohen, Daniel
Pacetti, Ariel Martín
author_role author
author2 Pacetti, Ariel Martín
author2_role author
dc.subject.none.fl_str_mv Cartan curves
Heegner points
topic Cartan curves
Heegner points
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19890
Kohen, Daniel; Pacetti, Ariel Martín; Heegner Points on Cartan Non-split Curves; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 68; 2; 4-2016; 422-444
0008-414X
1496-4279
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19890
identifier_str_mv Kohen, Daniel; Pacetti, Ariel Martín; Heegner Points on Cartan Non-split Curves; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 68; 2; 4-2016; 422-444
0008-414X
1496-4279
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4153/CJM-2015-047-6
info:eu-repo/semantics/altIdentifier/url/https://cms.math.ca/10.4153/CJM-2015-047-6
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.7801
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Canadian Mathematical Soc
publisher.none.fl_str_mv Canadian Mathematical Soc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606719068897280
score 13.000565