Non-classification of free Araki-Woods factors and τ-invariants

Autores
Sasyk, Roman; Törnquist, Asger; Vaes, Stefan
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We define the standard Borel space of free Araki-Woods factors and prove that their isomorphism relation is not classifiable by countable structures. We also prove that equality of τ-topologies, arising as invariants of type III factors, as well as coycle and outer conjugacy of actions of abelian groups on free product factors are not classifiable by countable structures.
Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Katholikie Universiteit Leuven; Bélgica. Universidad de Copenhagen; Dinamarca
Fil: Törnquist, Asger. University of Copenhagen. Department of Mathematics; Dinamarca
Fil: Vaes, Stefan. Katholikie Universiteit Leuven; Bélgica
Materia
CLASSIFICATION OF FACTORS AND THEIR AUTOMORPHIMS
AUTOMORPHISMS
DESCRIPTIVE SET THEORY
FOURIER ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPS
VON NEUMANN ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/108135

id CONICETDig_0279fde4321cfaef115f71dedd6e5f0f
oai_identifier_str oai:ri.conicet.gov.ar:11336/108135
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-classification of free Araki-Woods factors and τ-invariantsSasyk, RomanTörnquist, AsgerVaes, StefanCLASSIFICATION OF FACTORS AND THEIR AUTOMORPHIMSAUTOMORPHISMSDESCRIPTIVE SET THEORYFOURIER ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPSVON NEUMANN ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We define the standard Borel space of free Araki-Woods factors and prove that their isomorphism relation is not classifiable by countable structures. We also prove that equality of τ-topologies, arising as invariants of type III factors, as well as coycle and outer conjugacy of actions of abelian groups on free product factors are not classifiable by countable structures.Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Katholikie Universiteit Leuven; Bélgica. Universidad de Copenhagen; DinamarcaFil: Törnquist, Asger. University of Copenhagen. Department of Mathematics; DinamarcaFil: Vaes, Stefan. Katholikie Universiteit Leuven; BélgicaEuropean Mathematical Society2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/108135Sasyk, Roman; Törnquist, Asger; Vaes, Stefan; Non-classification of free Araki-Woods factors and τ-invariants; European Mathematical Society; Groups Geometry And Dynamics; 13; 4; 9-2019; 1219-12341661-7207CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=1661-7207&vol=13&iss=4&rank=4info:eu-repo/semantics/altIdentifier/doi/10.4171/GGD/520info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1708.07496info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:41Zoai:ri.conicet.gov.ar:11336/108135instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:41.541CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-classification of free Araki-Woods factors and τ-invariants
title Non-classification of free Araki-Woods factors and τ-invariants
spellingShingle Non-classification of free Araki-Woods factors and τ-invariants
Sasyk, Roman
CLASSIFICATION OF FACTORS AND THEIR AUTOMORPHIMS
AUTOMORPHISMS
DESCRIPTIVE SET THEORY
FOURIER ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPS
VON NEUMANN ALGEBRAS
title_short Non-classification of free Araki-Woods factors and τ-invariants
title_full Non-classification of free Araki-Woods factors and τ-invariants
title_fullStr Non-classification of free Araki-Woods factors and τ-invariants
title_full_unstemmed Non-classification of free Araki-Woods factors and τ-invariants
title_sort Non-classification of free Araki-Woods factors and τ-invariants
dc.creator.none.fl_str_mv Sasyk, Roman
Törnquist, Asger
Vaes, Stefan
author Sasyk, Roman
author_facet Sasyk, Roman
Törnquist, Asger
Vaes, Stefan
author_role author
author2 Törnquist, Asger
Vaes, Stefan
author2_role author
author
dc.subject.none.fl_str_mv CLASSIFICATION OF FACTORS AND THEIR AUTOMORPHIMS
AUTOMORPHISMS
DESCRIPTIVE SET THEORY
FOURIER ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPS
VON NEUMANN ALGEBRAS
topic CLASSIFICATION OF FACTORS AND THEIR AUTOMORPHIMS
AUTOMORPHISMS
DESCRIPTIVE SET THEORY
FOURIER ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPS
VON NEUMANN ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We define the standard Borel space of free Araki-Woods factors and prove that their isomorphism relation is not classifiable by countable structures. We also prove that equality of τ-topologies, arising as invariants of type III factors, as well as coycle and outer conjugacy of actions of abelian groups on free product factors are not classifiable by countable structures.
Fil: Sasyk, Roman. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Katholikie Universiteit Leuven; Bélgica. Universidad de Copenhagen; Dinamarca
Fil: Törnquist, Asger. University of Copenhagen. Department of Mathematics; Dinamarca
Fil: Vaes, Stefan. Katholikie Universiteit Leuven; Bélgica
description We define the standard Borel space of free Araki-Woods factors and prove that their isomorphism relation is not classifiable by countable structures. We also prove that equality of τ-topologies, arising as invariants of type III factors, as well as coycle and outer conjugacy of actions of abelian groups on free product factors are not classifiable by countable structures.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/108135
Sasyk, Roman; Törnquist, Asger; Vaes, Stefan; Non-classification of free Araki-Woods factors and τ-invariants; European Mathematical Society; Groups Geometry And Dynamics; 13; 4; 9-2019; 1219-1234
1661-7207
CONICET Digital
CONICET
url http://hdl.handle.net/11336/108135
identifier_str_mv Sasyk, Roman; Törnquist, Asger; Vaes, Stefan; Non-classification of free Araki-Woods factors and τ-invariants; European Mathematical Society; Groups Geometry And Dynamics; 13; 4; 9-2019; 1219-1234
1661-7207
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=1661-7207&vol=13&iss=4&rank=4
info:eu-repo/semantics/altIdentifier/doi/10.4171/GGD/520
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1708.07496
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv European Mathematical Society
publisher.none.fl_str_mv European Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614131773079552
score 13.070432