Generalized Buzano inequality

Autores
Bottazzi, Tamara Paula; Conde, Cristian Marcelo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
If P is an orthogonal projection defined on an inner product space H, then the inequality (formula presented) fulfills for any (formula presented). In particular, when P is the identity operator, then it recovers the famous Buzano inequality. We obtain generalizations of such classical inequality, which hold for certain families of bounded linear operators defined on H. In addition, several new inequalities involving the norm and numerical radius of an operator are established.
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; Argentina
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina
Materia
BOUNDED LINEAR OPERATOR
BUZANO INEQUALITY
CAUCHY-SCHWARZ INEQUALITY
HILBERT SPACE
INNER PRODUCT SPACE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/225616

id CONICETDig_00861e719b15c7af3401a18328a57981
oai_identifier_str oai:ri.conicet.gov.ar:11336/225616
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized Buzano inequalityBottazzi, Tamara PaulaConde, Cristian MarceloBOUNDED LINEAR OPERATORBUZANO INEQUALITYCAUCHY-SCHWARZ INEQUALITYHILBERT SPACEINNER PRODUCT SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If P is an orthogonal projection defined on an inner product space H, then the inequality (formula presented) fulfills for any (formula presented). In particular, when P is the identity operator, then it recovers the famous Buzano inequality. We obtain generalizations of such classical inequality, which hold for certain families of bounded linear operators defined on H. In addition, several new inequalities involving the norm and numerical radius of an operator are established.Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; ArgentinaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; ArgentinaUniv Nis2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225616Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Generalized Buzano inequality; Univ Nis; Filomat; 37; 27; 12-2023; 9377-93900354-51802406-0933CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/20845info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2204.14233info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:33Zoai:ri.conicet.gov.ar:11336/225616instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:33.464CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized Buzano inequality
title Generalized Buzano inequality
spellingShingle Generalized Buzano inequality
Bottazzi, Tamara Paula
BOUNDED LINEAR OPERATOR
BUZANO INEQUALITY
CAUCHY-SCHWARZ INEQUALITY
HILBERT SPACE
INNER PRODUCT SPACE
title_short Generalized Buzano inequality
title_full Generalized Buzano inequality
title_fullStr Generalized Buzano inequality
title_full_unstemmed Generalized Buzano inequality
title_sort Generalized Buzano inequality
dc.creator.none.fl_str_mv Bottazzi, Tamara Paula
Conde, Cristian Marcelo
author Bottazzi, Tamara Paula
author_facet Bottazzi, Tamara Paula
Conde, Cristian Marcelo
author_role author
author2 Conde, Cristian Marcelo
author2_role author
dc.subject.none.fl_str_mv BOUNDED LINEAR OPERATOR
BUZANO INEQUALITY
CAUCHY-SCHWARZ INEQUALITY
HILBERT SPACE
INNER PRODUCT SPACE
topic BOUNDED LINEAR OPERATOR
BUZANO INEQUALITY
CAUCHY-SCHWARZ INEQUALITY
HILBERT SPACE
INNER PRODUCT SPACE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv If P is an orthogonal projection defined on an inner product space H, then the inequality (formula presented) fulfills for any (formula presented). In particular, when P is the identity operator, then it recovers the famous Buzano inequality. We obtain generalizations of such classical inequality, which hold for certain families of bounded linear operators defined on H. In addition, several new inequalities involving the norm and numerical radius of an operator are established.
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; Argentina
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina
description If P is an orthogonal projection defined on an inner product space H, then the inequality (formula presented) fulfills for any (formula presented). In particular, when P is the identity operator, then it recovers the famous Buzano inequality. We obtain generalizations of such classical inequality, which hold for certain families of bounded linear operators defined on H. In addition, several new inequalities involving the norm and numerical radius of an operator are established.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/225616
Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Generalized Buzano inequality; Univ Nis; Filomat; 37; 27; 12-2023; 9377-9390
0354-5180
2406-0933
CONICET Digital
CONICET
url http://hdl.handle.net/11336/225616
identifier_str_mv Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Generalized Buzano inequality; Univ Nis; Filomat; 37; 27; 12-2023; 9377-9390
0354-5180
2406-0933
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/20845
info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2204.14233
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Univ Nis
publisher.none.fl_str_mv Univ Nis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614015744999424
score 13.070432