Generalized Buzano inequality
- Autores
- Bottazzi, Tamara Paula; Conde, Cristian Marcelo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- If P is an orthogonal projection defined on an inner product space H, then the inequality (formula presented) fulfills for any (formula presented). In particular, when P is the identity operator, then it recovers the famous Buzano inequality. We obtain generalizations of such classical inequality, which hold for certain families of bounded linear operators defined on H. In addition, several new inequalities involving the norm and numerical radius of an operator are established.
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; Argentina
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
BOUNDED LINEAR OPERATOR
BUZANO INEQUALITY
CAUCHY-SCHWARZ INEQUALITY
HILBERT SPACE
INNER PRODUCT SPACE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/225616
Ver los metadatos del registro completo
id |
CONICETDig_00861e719b15c7af3401a18328a57981 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/225616 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Generalized Buzano inequalityBottazzi, Tamara PaulaConde, Cristian MarceloBOUNDED LINEAR OPERATORBUZANO INEQUALITYCAUCHY-SCHWARZ INEQUALITYHILBERT SPACEINNER PRODUCT SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1If P is an orthogonal projection defined on an inner product space H, then the inequality (formula presented) fulfills for any (formula presented). In particular, when P is the identity operator, then it recovers the famous Buzano inequality. We obtain generalizations of such classical inequality, which hold for certain families of bounded linear operators defined on H. In addition, several new inequalities involving the norm and numerical radius of an operator are established.Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; ArgentinaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; ArgentinaUniv Nis2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225616Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Generalized Buzano inequality; Univ Nis; Filomat; 37; 27; 12-2023; 9377-93900354-51802406-0933CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/20845info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2204.14233info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:33Zoai:ri.conicet.gov.ar:11336/225616instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:33.464CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Generalized Buzano inequality |
title |
Generalized Buzano inequality |
spellingShingle |
Generalized Buzano inequality Bottazzi, Tamara Paula BOUNDED LINEAR OPERATOR BUZANO INEQUALITY CAUCHY-SCHWARZ INEQUALITY HILBERT SPACE INNER PRODUCT SPACE |
title_short |
Generalized Buzano inequality |
title_full |
Generalized Buzano inequality |
title_fullStr |
Generalized Buzano inequality |
title_full_unstemmed |
Generalized Buzano inequality |
title_sort |
Generalized Buzano inequality |
dc.creator.none.fl_str_mv |
Bottazzi, Tamara Paula Conde, Cristian Marcelo |
author |
Bottazzi, Tamara Paula |
author_facet |
Bottazzi, Tamara Paula Conde, Cristian Marcelo |
author_role |
author |
author2 |
Conde, Cristian Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
BOUNDED LINEAR OPERATOR BUZANO INEQUALITY CAUCHY-SCHWARZ INEQUALITY HILBERT SPACE INNER PRODUCT SPACE |
topic |
BOUNDED LINEAR OPERATOR BUZANO INEQUALITY CAUCHY-SCHWARZ INEQUALITY HILBERT SPACE INNER PRODUCT SPACE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
If P is an orthogonal projection defined on an inner product space H, then the inequality (formula presented) fulfills for any (formula presented). In particular, when P is the identity operator, then it recovers the famous Buzano inequality. We obtain generalizations of such classical inequality, which hold for certain families of bounded linear operators defined on H. In addition, several new inequalities involving the norm and numerical radius of an operator are established. Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro. Sede Andina. Laboratorio de Procesamiento de Señales Aplicadas y Computación de Alto Rendimiento; Argentina Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina |
description |
If P is an orthogonal projection defined on an inner product space H, then the inequality (formula presented) fulfills for any (formula presented). In particular, when P is the identity operator, then it recovers the famous Buzano inequality. We obtain generalizations of such classical inequality, which hold for certain families of bounded linear operators defined on H. In addition, several new inequalities involving the norm and numerical radius of an operator are established. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/225616 Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Generalized Buzano inequality; Univ Nis; Filomat; 37; 27; 12-2023; 9377-9390 0354-5180 2406-0933 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/225616 |
identifier_str_mv |
Bottazzi, Tamara Paula; Conde, Cristian Marcelo; Generalized Buzano inequality; Univ Nis; Filomat; 37; 27; 12-2023; 9377-9390 0354-5180 2406-0933 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/view/20845 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2204.14233 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Univ Nis |
publisher.none.fl_str_mv |
Univ Nis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614015744999424 |
score |
13.070432 |