Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models
- Autores
- Casado, Ulises Martín; Altuna, Facundo Ignacio; Miccio, Luis Alejandro
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this study, we employed machine learning techniques to improve sustainable materials design by examining how various latent space representations affect the AI performance in property predictions. We compared three fingerprinting methodologies: (a) neural networks trained on specific properties, (b) encoder–decoder architectures, and c) traditional Morgan fingerprints. Their encoding quality was quantitatively compared by using these fingerprints as inputs for a simple regression model (Random Forest) to predict glass transition temperatures (Tg), a critical parameter in determining material performance. We found that the task-specific neural networks achieved the highest accuracy, with a mean absolute percentage error (MAPE) of 10% and an R2 of 0.9, significantly outperforming encoder–decoder models (MAPE: 19%, R2: 0.76) and Morgan fingerprints (MAPE: 24%, R2: 0.6). In addition, we used dimensionality reduction techniques, such as principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE), to gain insights on the models’ abilities to learn relevant molecular features to Tg. By offering a more profound understanding of how chemical structures influence AI-based property predictions, this approach enables the efficient identification of high-performing materials in applications that range from water decontamination to polymer recyclability with minimum experimental effort, promoting a circular economy in materials science.
Fil: Casado, Ulises Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Altuna, Facundo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad del País Vasco; España - Materia
-
AI-assisted design
glass formers
latent space
data scarcity conditions
sustainable materials design - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/264165
Ver los metadatos del registro completo
id |
CONICETDig_00231faa90dcaaf92851e2f6a2e17bae |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/264165 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI ModelsCasado, Ulises MartínAltuna, Facundo IgnacioMiccio, Luis AlejandroAI-assisted designglass formerslatent spacedata scarcity conditionssustainable materials designhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In this study, we employed machine learning techniques to improve sustainable materials design by examining how various latent space representations affect the AI performance in property predictions. We compared three fingerprinting methodologies: (a) neural networks trained on specific properties, (b) encoder–decoder architectures, and c) traditional Morgan fingerprints. Their encoding quality was quantitatively compared by using these fingerprints as inputs for a simple regression model (Random Forest) to predict glass transition temperatures (Tg), a critical parameter in determining material performance. We found that the task-specific neural networks achieved the highest accuracy, with a mean absolute percentage error (MAPE) of 10% and an R2 of 0.9, significantly outperforming encoder–decoder models (MAPE: 19%, R2: 0.76) and Morgan fingerprints (MAPE: 24%, R2: 0.6). In addition, we used dimensionality reduction techniques, such as principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE), to gain insights on the models’ abilities to learn relevant molecular features to Tg. By offering a more profound understanding of how chemical structures influence AI-based property predictions, this approach enables the efficient identification of high-performing materials in applications that range from water decontamination to polymer recyclability with minimum experimental effort, promoting a circular economy in materials science.Fil: Casado, Ulises Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Altuna, Facundo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad del País Vasco; EspañaMDPI2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264165Casado, Ulises Martín; Altuna, Facundo Ignacio; Miccio, Luis Alejandro; Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models; MDPI; Sustainability; 16; 23; 12-2024; 1-152071-1050CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2071-1050/16/23/10681info:eu-repo/semantics/altIdentifier/doi/10.3390/su162310681info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:43Zoai:ri.conicet.gov.ar:11336/264165instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:43.788CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models |
title |
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models |
spellingShingle |
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models Casado, Ulises Martín AI-assisted design glass formers latent space data scarcity conditions sustainable materials design |
title_short |
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models |
title_full |
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models |
title_fullStr |
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models |
title_full_unstemmed |
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models |
title_sort |
Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models |
dc.creator.none.fl_str_mv |
Casado, Ulises Martín Altuna, Facundo Ignacio Miccio, Luis Alejandro |
author |
Casado, Ulises Martín |
author_facet |
Casado, Ulises Martín Altuna, Facundo Ignacio Miccio, Luis Alejandro |
author_role |
author |
author2 |
Altuna, Facundo Ignacio Miccio, Luis Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
AI-assisted design glass formers latent space data scarcity conditions sustainable materials design |
topic |
AI-assisted design glass formers latent space data scarcity conditions sustainable materials design |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this study, we employed machine learning techniques to improve sustainable materials design by examining how various latent space representations affect the AI performance in property predictions. We compared three fingerprinting methodologies: (a) neural networks trained on specific properties, (b) encoder–decoder architectures, and c) traditional Morgan fingerprints. Their encoding quality was quantitatively compared by using these fingerprints as inputs for a simple regression model (Random Forest) to predict glass transition temperatures (Tg), a critical parameter in determining material performance. We found that the task-specific neural networks achieved the highest accuracy, with a mean absolute percentage error (MAPE) of 10% and an R2 of 0.9, significantly outperforming encoder–decoder models (MAPE: 19%, R2: 0.76) and Morgan fingerprints (MAPE: 24%, R2: 0.6). In addition, we used dimensionality reduction techniques, such as principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE), to gain insights on the models’ abilities to learn relevant molecular features to Tg. By offering a more profound understanding of how chemical structures influence AI-based property predictions, this approach enables the efficient identification of high-performing materials in applications that range from water decontamination to polymer recyclability with minimum experimental effort, promoting a circular economy in materials science. Fil: Casado, Ulises Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Altuna, Facundo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad del País Vasco; España |
description |
In this study, we employed machine learning techniques to improve sustainable materials design by examining how various latent space representations affect the AI performance in property predictions. We compared three fingerprinting methodologies: (a) neural networks trained on specific properties, (b) encoder–decoder architectures, and c) traditional Morgan fingerprints. Their encoding quality was quantitatively compared by using these fingerprints as inputs for a simple regression model (Random Forest) to predict glass transition temperatures (Tg), a critical parameter in determining material performance. We found that the task-specific neural networks achieved the highest accuracy, with a mean absolute percentage error (MAPE) of 10% and an R2 of 0.9, significantly outperforming encoder–decoder models (MAPE: 19%, R2: 0.76) and Morgan fingerprints (MAPE: 24%, R2: 0.6). In addition, we used dimensionality reduction techniques, such as principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE), to gain insights on the models’ abilities to learn relevant molecular features to Tg. By offering a more profound understanding of how chemical structures influence AI-based property predictions, this approach enables the efficient identification of high-performing materials in applications that range from water decontamination to polymer recyclability with minimum experimental effort, promoting a circular economy in materials science. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/264165 Casado, Ulises Martín; Altuna, Facundo Ignacio; Miccio, Luis Alejandro; Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models; MDPI; Sustainability; 16; 23; 12-2024; 1-15 2071-1050 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/264165 |
identifier_str_mv |
Casado, Ulises Martín; Altuna, Facundo Ignacio; Miccio, Luis Alejandro; Towards Sustainable Material Design: A Comparative Analysis of Latent Space Representations in AI Models; MDPI; Sustainability; 16; 23; 12-2024; 1-15 2071-1050 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2071-1050/16/23/10681 info:eu-repo/semantics/altIdentifier/doi/10.3390/su162310681 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614423166058496 |
score |
13.070432 |