Understanding Polymers Through Transfer Learning and Explainable AI
- Autores
- Miccio, Luis Alejandro
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates’ glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems.
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Donostia International Physic Center; España. Universidad del País Vasco; España - Materia
-
AI
Transfer learning
White boxing
Polymer glass transition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/266553
Ver los metadatos del registro completo
id |
CONICETDig_7ff1f402b869a1a4831b0750f942158d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/266553 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Understanding Polymers Through Transfer Learning and Explainable AIMiccio, Luis AlejandroAITransfer learningWhite boxingPolymer glass transitionhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates’ glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems.Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Donostia International Physic Center; España. Universidad del País Vasco; EspañaMultidisciplinary Digital Publishing Institute2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266553Miccio, Luis Alejandro; Understanding Polymers Through Transfer Learning and Explainable AI; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 22; 11-2024; 1-162076-3417CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/22/10413info:eu-repo/semantics/altIdentifier/doi/10.3390/app142210413info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:27Zoai:ri.conicet.gov.ar:11336/266553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:27.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Understanding Polymers Through Transfer Learning and Explainable AI |
title |
Understanding Polymers Through Transfer Learning and Explainable AI |
spellingShingle |
Understanding Polymers Through Transfer Learning and Explainable AI Miccio, Luis Alejandro AI Transfer learning White boxing Polymer glass transition |
title_short |
Understanding Polymers Through Transfer Learning and Explainable AI |
title_full |
Understanding Polymers Through Transfer Learning and Explainable AI |
title_fullStr |
Understanding Polymers Through Transfer Learning and Explainable AI |
title_full_unstemmed |
Understanding Polymers Through Transfer Learning and Explainable AI |
title_sort |
Understanding Polymers Through Transfer Learning and Explainable AI |
dc.creator.none.fl_str_mv |
Miccio, Luis Alejandro |
author |
Miccio, Luis Alejandro |
author_facet |
Miccio, Luis Alejandro |
author_role |
author |
dc.subject.none.fl_str_mv |
AI Transfer learning White boxing Polymer glass transition |
topic |
AI Transfer learning White boxing Polymer glass transition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates’ glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems. Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Donostia International Physic Center; España. Universidad del País Vasco; España |
description |
In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates’ glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/266553 Miccio, Luis Alejandro; Understanding Polymers Through Transfer Learning and Explainable AI; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 22; 11-2024; 1-16 2076-3417 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/266553 |
identifier_str_mv |
Miccio, Luis Alejandro; Understanding Polymers Through Transfer Learning and Explainable AI; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 22; 11-2024; 1-16 2076-3417 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/22/10413 info:eu-repo/semantics/altIdentifier/doi/10.3390/app142210413 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614506205937664 |
score |
13.070432 |