Understanding Polymers Through Transfer Learning and Explainable AI

Autores
Miccio, Luis Alejandro
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates’ glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems.
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Donostia International Physic Center; España. Universidad del País Vasco; España
Materia
AI
Transfer learning
White boxing
Polymer glass transition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/266553

id CONICETDig_7ff1f402b869a1a4831b0750f942158d
oai_identifier_str oai:ri.conicet.gov.ar:11336/266553
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Understanding Polymers Through Transfer Learning and Explainable AIMiccio, Luis AlejandroAITransfer learningWhite boxingPolymer glass transitionhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates’ glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems.Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Donostia International Physic Center; España. Universidad del País Vasco; EspañaMultidisciplinary Digital Publishing Institute2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266553Miccio, Luis Alejandro; Understanding Polymers Through Transfer Learning and Explainable AI; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 22; 11-2024; 1-162076-3417CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/22/10413info:eu-repo/semantics/altIdentifier/doi/10.3390/app142210413info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:27Zoai:ri.conicet.gov.ar:11336/266553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:27.822CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Understanding Polymers Through Transfer Learning and Explainable AI
title Understanding Polymers Through Transfer Learning and Explainable AI
spellingShingle Understanding Polymers Through Transfer Learning and Explainable AI
Miccio, Luis Alejandro
AI
Transfer learning
White boxing
Polymer glass transition
title_short Understanding Polymers Through Transfer Learning and Explainable AI
title_full Understanding Polymers Through Transfer Learning and Explainable AI
title_fullStr Understanding Polymers Through Transfer Learning and Explainable AI
title_full_unstemmed Understanding Polymers Through Transfer Learning and Explainable AI
title_sort Understanding Polymers Through Transfer Learning and Explainable AI
dc.creator.none.fl_str_mv Miccio, Luis Alejandro
author Miccio, Luis Alejandro
author_facet Miccio, Luis Alejandro
author_role author
dc.subject.none.fl_str_mv AI
Transfer learning
White boxing
Polymer glass transition
topic AI
Transfer learning
White boxing
Polymer glass transition
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates’ glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems.
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Donostia International Physic Center; España. Universidad del País Vasco; España
description In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates’ glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems.
publishDate 2024
dc.date.none.fl_str_mv 2024-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/266553
Miccio, Luis Alejandro; Understanding Polymers Through Transfer Learning and Explainable AI; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 22; 11-2024; 1-16
2076-3417
CONICET Digital
CONICET
url http://hdl.handle.net/11336/266553
identifier_str_mv Miccio, Luis Alejandro; Understanding Polymers Through Transfer Learning and Explainable AI; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 22; 11-2024; 1-16
2076-3417
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/22/10413
info:eu-repo/semantics/altIdentifier/doi/10.3390/app142210413
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614506205937664
score 13.070432