Técnicas ópticas de compresión de datos holográficos

Autores
Velez Zea, Alejandro; Trejo, Sorayda; Barrera, John Fredy; Tebaldi, Myrian C.; Torroba, Roberto
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión enviada
Descripción
Actualmente, la holografía convencional evolucionó en una técnica opto-digital para el registro de campos ópticos, denominada holografía digital, que aprovecha las ventajas de los sistemas ópticos unidos a la flexibilidad del procesamiento digital. La holografía digital, de la misma manera que la holografía convencional, requiere el conocimiento de la información de la fase y de la amplitud del frente de onda. Esto se logra mediante el registro de la interferencia entre el haz que proviene del objeto y un haz de referencia o múltiples imágenes desplazadas en fase. Como ya mencionamos, un holograma digital contiene información tanto de amplitud como de fase, por lo tanto es evidente que almacenar este tipo de datos implicará un volumen mayor al de una imagen que contiene solo información de amplitud. Se han desarrollado numerosas técnicas para reducir el volumen de datos holográficos tales como la cuantización, el filtrado y algoritmos de compresión con y sin pérdida, es decir reduciendo o no la calidad de los datos. Uno de los algoritmos de compresión de imágenes con pérdidas más utilizados es el del Joint Photography Expert Group (JPEG). En este algoritmo la reducción del volumen trae aparejada una pérdida de la calidad de la imagen. Por otra parte, una técnica exitosa debería garantizar una máxima reducción del volumen de datos con una mínima pérdida. En la Ref. [8] se verificó que el algoritmo JPEG no es eficiente cuando se trabaja con imágenes que exhiben ruido aleatorio. Sin embargo, el efecto indeseado del ruido se puede reducir mediante el uso de técnicas de filtrado de la imagen de entrada. Por otra parte, en la Ref. [9] se encontró que la aplicación del JPEG a hologramas digitales no es la más adecuada dado que la componente de fase del holograma presenta variaciones aleatorias. Asimismo, debemos destacar que ese ruido aleatorio lleva la información necesaria para la reconstrucción del holograma. Es consecuencia, el ruido aleatorio que exhibe la componente de fase no se puede eliminar por procedimientos de filtrado, conspirando en consecuencia contra la eficiencia del método. El objetivo de este trabajo es desarrollar una técnica alternativa que sea eficiente para disminuir el volumen de datos holográficos, reduciendo a un mínimo la pérdida de calidad de la información reconstruida. La propuesta está basada en el uso de un sistema óptico virtual para realizar un escalado de los datos del campo óptico obtenido a partir del holograma. Se analizará la capacidad de compresión de nuestra propuesta y se la comparara con el JPEG. Por otra parte, se evaluará la calidad de la información reconstruida. La métrica utilizada para evaluar la calidad de los datos reconstruidos en términos de la reducción del volumen es el coeficiente de correlación (CC).
Materia
Óptica, Acústica
Holografía
Compresión de Datos
óptica
volumen de datos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/5717

id CICBA_c41cc68071f40f7c5aef0dd9c6380ac3
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/5717
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Técnicas ópticas de compresión de datos holográficosVelez Zea, AlejandroTrejo, SoraydaBarrera, John FredyTebaldi, Myrian C.Torroba, RobertoÓptica, AcústicaHolografíaCompresión de Datosópticavolumen de datosActualmente, la holografía convencional evolucionó en una técnica opto-digital para el registro de campos ópticos, denominada holografía digital, que aprovecha las ventajas de los sistemas ópticos unidos a la flexibilidad del procesamiento digital. La holografía digital, de la misma manera que la holografía convencional, requiere el conocimiento de la información de la fase y de la amplitud del frente de onda. Esto se logra mediante el registro de la interferencia entre el haz que proviene del objeto y un haz de referencia o múltiples imágenes desplazadas en fase. Como ya mencionamos, un holograma digital contiene información tanto de amplitud como de fase, por lo tanto es evidente que almacenar este tipo de datos implicará un volumen mayor al de una imagen que contiene solo información de amplitud. Se han desarrollado numerosas técnicas para reducir el volumen de datos holográficos tales como la cuantización, el filtrado y algoritmos de compresión con y sin pérdida, es decir reduciendo o no la calidad de los datos. Uno de los algoritmos de compresión de imágenes con pérdidas más utilizados es el del Joint Photography Expert Group (JPEG). En este algoritmo la reducción del volumen trae aparejada una pérdida de la calidad de la imagen. Por otra parte, una técnica exitosa debería garantizar una máxima reducción del volumen de datos con una mínima pérdida. En la Ref. [8] se verificó que el algoritmo JPEG no es eficiente cuando se trabaja con imágenes que exhiben ruido aleatorio. Sin embargo, el efecto indeseado del ruido se puede reducir mediante el uso de técnicas de filtrado de la imagen de entrada. Por otra parte, en la Ref. [9] se encontró que la aplicación del JPEG a hologramas digitales no es la más adecuada dado que la componente de fase del holograma presenta variaciones aleatorias. Asimismo, debemos destacar que ese ruido aleatorio lleva la información necesaria para la reconstrucción del holograma. Es consecuencia, el ruido aleatorio que exhibe la componente de fase no se puede eliminar por procedimientos de filtrado, conspirando en consecuencia contra la eficiencia del método. El objetivo de este trabajo es desarrollar una técnica alternativa que sea eficiente para disminuir el volumen de datos holográficos, reduciendo a un mínimo la pérdida de calidad de la información reconstruida. La propuesta está basada en el uso de un sistema óptico virtual para realizar un escalado de los datos del campo óptico obtenido a partir del holograma. Se analizará la capacidad de compresión de nuestra propuesta y se la comparara con el JPEG. Por otra parte, se evaluará la calidad de la información reconstruida. La métrica utilizada para evaluar la calidad de los datos reconstruidos en términos de la reducción del volumen es el coeficiente de correlación (CC).2017-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/5717spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:08Zoai:digital.cic.gba.gob.ar:11746/5717Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:09.408CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Técnicas ópticas de compresión de datos holográficos
title Técnicas ópticas de compresión de datos holográficos
spellingShingle Técnicas ópticas de compresión de datos holográficos
Velez Zea, Alejandro
Óptica, Acústica
Holografía
Compresión de Datos
óptica
volumen de datos
title_short Técnicas ópticas de compresión de datos holográficos
title_full Técnicas ópticas de compresión de datos holográficos
title_fullStr Técnicas ópticas de compresión de datos holográficos
title_full_unstemmed Técnicas ópticas de compresión de datos holográficos
title_sort Técnicas ópticas de compresión de datos holográficos
dc.creator.none.fl_str_mv Velez Zea, Alejandro
Trejo, Sorayda
Barrera, John Fredy
Tebaldi, Myrian C.
Torroba, Roberto
author Velez Zea, Alejandro
author_facet Velez Zea, Alejandro
Trejo, Sorayda
Barrera, John Fredy
Tebaldi, Myrian C.
Torroba, Roberto
author_role author
author2 Trejo, Sorayda
Barrera, John Fredy
Tebaldi, Myrian C.
Torroba, Roberto
author2_role author
author
author
author
dc.subject.none.fl_str_mv Óptica, Acústica
Holografía
Compresión de Datos
óptica
volumen de datos
topic Óptica, Acústica
Holografía
Compresión de Datos
óptica
volumen de datos
dc.description.none.fl_txt_mv Actualmente, la holografía convencional evolucionó en una técnica opto-digital para el registro de campos ópticos, denominada holografía digital, que aprovecha las ventajas de los sistemas ópticos unidos a la flexibilidad del procesamiento digital. La holografía digital, de la misma manera que la holografía convencional, requiere el conocimiento de la información de la fase y de la amplitud del frente de onda. Esto se logra mediante el registro de la interferencia entre el haz que proviene del objeto y un haz de referencia o múltiples imágenes desplazadas en fase. Como ya mencionamos, un holograma digital contiene información tanto de amplitud como de fase, por lo tanto es evidente que almacenar este tipo de datos implicará un volumen mayor al de una imagen que contiene solo información de amplitud. Se han desarrollado numerosas técnicas para reducir el volumen de datos holográficos tales como la cuantización, el filtrado y algoritmos de compresión con y sin pérdida, es decir reduciendo o no la calidad de los datos. Uno de los algoritmos de compresión de imágenes con pérdidas más utilizados es el del Joint Photography Expert Group (JPEG). En este algoritmo la reducción del volumen trae aparejada una pérdida de la calidad de la imagen. Por otra parte, una técnica exitosa debería garantizar una máxima reducción del volumen de datos con una mínima pérdida. En la Ref. [8] se verificó que el algoritmo JPEG no es eficiente cuando se trabaja con imágenes que exhiben ruido aleatorio. Sin embargo, el efecto indeseado del ruido se puede reducir mediante el uso de técnicas de filtrado de la imagen de entrada. Por otra parte, en la Ref. [9] se encontró que la aplicación del JPEG a hologramas digitales no es la más adecuada dado que la componente de fase del holograma presenta variaciones aleatorias. Asimismo, debemos destacar que ese ruido aleatorio lleva la información necesaria para la reconstrucción del holograma. Es consecuencia, el ruido aleatorio que exhibe la componente de fase no se puede eliminar por procedimientos de filtrado, conspirando en consecuencia contra la eficiencia del método. El objetivo de este trabajo es desarrollar una técnica alternativa que sea eficiente para disminuir el volumen de datos holográficos, reduciendo a un mínimo la pérdida de calidad de la información reconstruida. La propuesta está basada en el uso de un sistema óptico virtual para realizar un escalado de los datos del campo óptico obtenido a partir del holograma. Se analizará la capacidad de compresión de nuestra propuesta y se la comparara con el JPEG. Por otra parte, se evaluará la calidad de la información reconstruida. La métrica utilizada para evaluar la calidad de los datos reconstruidos en términos de la reducción del volumen es el coeficiente de correlación (CC).
description Actualmente, la holografía convencional evolucionó en una técnica opto-digital para el registro de campos ópticos, denominada holografía digital, que aprovecha las ventajas de los sistemas ópticos unidos a la flexibilidad del procesamiento digital. La holografía digital, de la misma manera que la holografía convencional, requiere el conocimiento de la información de la fase y de la amplitud del frente de onda. Esto se logra mediante el registro de la interferencia entre el haz que proviene del objeto y un haz de referencia o múltiples imágenes desplazadas en fase. Como ya mencionamos, un holograma digital contiene información tanto de amplitud como de fase, por lo tanto es evidente que almacenar este tipo de datos implicará un volumen mayor al de una imagen que contiene solo información de amplitud. Se han desarrollado numerosas técnicas para reducir el volumen de datos holográficos tales como la cuantización, el filtrado y algoritmos de compresión con y sin pérdida, es decir reduciendo o no la calidad de los datos. Uno de los algoritmos de compresión de imágenes con pérdidas más utilizados es el del Joint Photography Expert Group (JPEG). En este algoritmo la reducción del volumen trae aparejada una pérdida de la calidad de la imagen. Por otra parte, una técnica exitosa debería garantizar una máxima reducción del volumen de datos con una mínima pérdida. En la Ref. [8] se verificó que el algoritmo JPEG no es eficiente cuando se trabaja con imágenes que exhiben ruido aleatorio. Sin embargo, el efecto indeseado del ruido se puede reducir mediante el uso de técnicas de filtrado de la imagen de entrada. Por otra parte, en la Ref. [9] se encontró que la aplicación del JPEG a hologramas digitales no es la más adecuada dado que la componente de fase del holograma presenta variaciones aleatorias. Asimismo, debemos destacar que ese ruido aleatorio lleva la información necesaria para la reconstrucción del holograma. Es consecuencia, el ruido aleatorio que exhibe la componente de fase no se puede eliminar por procedimientos de filtrado, conspirando en consecuencia contra la eficiencia del método. El objetivo de este trabajo es desarrollar una técnica alternativa que sea eficiente para disminuir el volumen de datos holográficos, reduciendo a un mínimo la pérdida de calidad de la información reconstruida. La propuesta está basada en el uso de un sistema óptico virtual para realizar un escalado de los datos del campo óptico obtenido a partir del holograma. Se analizará la capacidad de compresión de nuestra propuesta y se la comparara con el JPEG. Por otra parte, se evaluará la calidad de la información reconstruida. La métrica utilizada para evaluar la calidad de los datos reconstruidos en términos de la reducción del volumen es el coeficiente de correlación (CC).
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/5717
url https://digital.cic.gba.gob.ar/handle/11746/5717
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842340404797636608
score 12.623145