Prediction of data visibility in two-dimensional scatterplots

Autores
Urribarri, Dana; Castro, Silvia Mabel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The result of a visualization process depends on the user’s decisions along it. With the intention of accelerating this process and guaranteeing an appropriate visualization of the data, we are looking to semi-automatize the process to help the users with the decision-making along it. To contribute to this semi-automation, it is useful to have metrics that characterize different important aspects of the visualization techniques, such as data representation visibility. Besides, scatterplots are a widely used technique to visualize scalar datasets. In this context, this work presents a metric that evaluates data representation visibility considering glyph visibility in scatterplots. We defined a metric that estimates the proportion of glyphs that will be visible regardless of the drawing order, and it depends on the number of items in the dataset, the size of the window, and the size of the glyphs that will represent the data. To define and approximate the metric, we experimented with several random datasets for which both dimensions followed a normal distribution. This metric constitutes an alternative to characterize scatterplots and collaborates in the semi-automation of the user’s decisions along the visualization process.
Materia
Ciencias de la Computación e Información
Information visualization
visualization technique
scatterplots
visual scalability metric
visibility metric
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/3.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/8136

id CICBA_632000622bbb9673000e70310ae74800
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/8136
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Prediction of data visibility in two-dimensional scatterplotsUrribarri, DanaCastro, Silvia MabelCiencias de la Computación e InformaciónInformation visualizationvisualization techniquescatterplotsvisual scalability metricvisibility metricThe result of a visualization process depends on the user’s decisions along it. With the intention of accelerating this process and guaranteeing an appropriate visualization of the data, we are looking to semi-automatize the process to help the users with the decision-making along it. To contribute to this semi-automation, it is useful to have metrics that characterize different important aspects of the visualization techniques, such as data representation visibility. Besides, scatterplots are a widely used technique to visualize scalar datasets. In this context, this work presents a metric that evaluates data representation visibility considering glyph visibility in scatterplots. We defined a metric that estimates the proportion of glyphs that will be visible regardless of the drawing order, and it depends on the number of items in the dataset, the size of the window, and the size of the glyphs that will represent the data. To define and approximate the metric, we experimented with several random datasets for which both dimensions followed a normal distribution. This metric constitutes an alternative to characterize scatterplots and collaborates in the semi-automation of the user’s decisions along the visualization process.SAGE2016-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/8136enginfo:eu-repo/semantics/altIdentifier/doi/10.1177/1473871616638892info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-12-26T11:06:08Zoai:digital.cic.gba.gob.ar:11746/8136Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-12-26 11:06:09.184CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Prediction of data visibility in two-dimensional scatterplots
title Prediction of data visibility in two-dimensional scatterplots
spellingShingle Prediction of data visibility in two-dimensional scatterplots
Urribarri, Dana
Ciencias de la Computación e Información
Information visualization
visualization technique
scatterplots
visual scalability metric
visibility metric
title_short Prediction of data visibility in two-dimensional scatterplots
title_full Prediction of data visibility in two-dimensional scatterplots
title_fullStr Prediction of data visibility in two-dimensional scatterplots
title_full_unstemmed Prediction of data visibility in two-dimensional scatterplots
title_sort Prediction of data visibility in two-dimensional scatterplots
dc.creator.none.fl_str_mv Urribarri, Dana
Castro, Silvia Mabel
author Urribarri, Dana
author_facet Urribarri, Dana
Castro, Silvia Mabel
author_role author
author2 Castro, Silvia Mabel
author2_role author
dc.subject.none.fl_str_mv Ciencias de la Computación e Información
Information visualization
visualization technique
scatterplots
visual scalability metric
visibility metric
topic Ciencias de la Computación e Información
Information visualization
visualization technique
scatterplots
visual scalability metric
visibility metric
dc.description.none.fl_txt_mv The result of a visualization process depends on the user’s decisions along it. With the intention of accelerating this process and guaranteeing an appropriate visualization of the data, we are looking to semi-automatize the process to help the users with the decision-making along it. To contribute to this semi-automation, it is useful to have metrics that characterize different important aspects of the visualization techniques, such as data representation visibility. Besides, scatterplots are a widely used technique to visualize scalar datasets. In this context, this work presents a metric that evaluates data representation visibility considering glyph visibility in scatterplots. We defined a metric that estimates the proportion of glyphs that will be visible regardless of the drawing order, and it depends on the number of items in the dataset, the size of the window, and the size of the glyphs that will represent the data. To define and approximate the metric, we experimented with several random datasets for which both dimensions followed a normal distribution. This metric constitutes an alternative to characterize scatterplots and collaborates in the semi-automation of the user’s decisions along the visualization process.
description The result of a visualization process depends on the user’s decisions along it. With the intention of accelerating this process and guaranteeing an appropriate visualization of the data, we are looking to semi-automatize the process to help the users with the decision-making along it. To contribute to this semi-automation, it is useful to have metrics that characterize different important aspects of the visualization techniques, such as data representation visibility. Besides, scatterplots are a widely used technique to visualize scalar datasets. In this context, this work presents a metric that evaluates data representation visibility considering glyph visibility in scatterplots. We defined a metric that estimates the proportion of glyphs that will be visible regardless of the drawing order, and it depends on the number of items in the dataset, the size of the window, and the size of the glyphs that will represent the data. To define and approximate the metric, we experimented with several random datasets for which both dimensions followed a normal distribution. This metric constitutes an alternative to characterize scatterplots and collaborates in the semi-automation of the user’s decisions along the visualization process.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/8136
url https://digital.cic.gba.gob.ar/handle/11746/8136
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1177/1473871616638892
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SAGE
publisher.none.fl_str_mv SAGE
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1852581548526665728
score 13.075124