Prediction of data visibility in two-dimensional scatterplots
- Autores
- Urribarri, Dana; Castro, Silvia Mabel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The result of a visualization process depends on the user’s decisions along it. With the intention of accelerating this process and guaranteeing an appropriate visualization of the data, we are looking to semi-automatize the process to help the users with the decision-making along it. To contribute to this semi-automation, it is useful to have metrics that characterize different important aspects of the visualization techniques, such as data representation visibility. Besides, scatterplots are a widely used technique to visualize scalar datasets. In this context, this work presents a metric that evaluates data representation visibility considering glyph visibility in scatterplots. We defined a metric that estimates the proportion of glyphs that will be visible regardless of the drawing order, and it depends on the number of items in the dataset, the size of the window, and the size of the glyphs that will represent the data. To define and approximate the metric, we experimented with several random datasets for which both dimensions followed a normal distribution. This metric constitutes an alternative to characterize scatterplots and collaborates in the semi-automation of the user’s decisions along the visualization process.
- Materia
-
Ciencias de la Computación e Información
Information visualization
visualization technique
scatterplots
visual scalability metric
visibility metric - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
.jpg)
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/8136
Ver los metadatos del registro completo
| id |
CICBA_632000622bbb9673000e70310ae74800 |
|---|---|
| oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/8136 |
| network_acronym_str |
CICBA |
| repository_id_str |
9441 |
| network_name_str |
CIC Digital (CICBA) |
| spelling |
Prediction of data visibility in two-dimensional scatterplotsUrribarri, DanaCastro, Silvia MabelCiencias de la Computación e InformaciónInformation visualizationvisualization techniquescatterplotsvisual scalability metricvisibility metricThe result of a visualization process depends on the user’s decisions along it. With the intention of accelerating this process and guaranteeing an appropriate visualization of the data, we are looking to semi-automatize the process to help the users with the decision-making along it. To contribute to this semi-automation, it is useful to have metrics that characterize different important aspects of the visualization techniques, such as data representation visibility. Besides, scatterplots are a widely used technique to visualize scalar datasets. In this context, this work presents a metric that evaluates data representation visibility considering glyph visibility in scatterplots. We defined a metric that estimates the proportion of glyphs that will be visible regardless of the drawing order, and it depends on the number of items in the dataset, the size of the window, and the size of the glyphs that will represent the data. To define and approximate the metric, we experimented with several random datasets for which both dimensions followed a normal distribution. This metric constitutes an alternative to characterize scatterplots and collaborates in the semi-automation of the user’s decisions along the visualization process.SAGE2016-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/8136enginfo:eu-repo/semantics/altIdentifier/doi/10.1177/1473871616638892info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-12-26T11:06:08Zoai:digital.cic.gba.gob.ar:11746/8136Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-12-26 11:06:09.184CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
| dc.title.none.fl_str_mv |
Prediction of data visibility in two-dimensional scatterplots |
| title |
Prediction of data visibility in two-dimensional scatterplots |
| spellingShingle |
Prediction of data visibility in two-dimensional scatterplots Urribarri, Dana Ciencias de la Computación e Información Information visualization visualization technique scatterplots visual scalability metric visibility metric |
| title_short |
Prediction of data visibility in two-dimensional scatterplots |
| title_full |
Prediction of data visibility in two-dimensional scatterplots |
| title_fullStr |
Prediction of data visibility in two-dimensional scatterplots |
| title_full_unstemmed |
Prediction of data visibility in two-dimensional scatterplots |
| title_sort |
Prediction of data visibility in two-dimensional scatterplots |
| dc.creator.none.fl_str_mv |
Urribarri, Dana Castro, Silvia Mabel |
| author |
Urribarri, Dana |
| author_facet |
Urribarri, Dana Castro, Silvia Mabel |
| author_role |
author |
| author2 |
Castro, Silvia Mabel |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Information visualization visualization technique scatterplots visual scalability metric visibility metric |
| topic |
Ciencias de la Computación e Información Information visualization visualization technique scatterplots visual scalability metric visibility metric |
| dc.description.none.fl_txt_mv |
The result of a visualization process depends on the user’s decisions along it. With the intention of accelerating this process and guaranteeing an appropriate visualization of the data, we are looking to semi-automatize the process to help the users with the decision-making along it. To contribute to this semi-automation, it is useful to have metrics that characterize different important aspects of the visualization techniques, such as data representation visibility. Besides, scatterplots are a widely used technique to visualize scalar datasets. In this context, this work presents a metric that evaluates data representation visibility considering glyph visibility in scatterplots. We defined a metric that estimates the proportion of glyphs that will be visible regardless of the drawing order, and it depends on the number of items in the dataset, the size of the window, and the size of the glyphs that will represent the data. To define and approximate the metric, we experimented with several random datasets for which both dimensions followed a normal distribution. This metric constitutes an alternative to characterize scatterplots and collaborates in the semi-automation of the user’s decisions along the visualization process. |
| description |
The result of a visualization process depends on the user’s decisions along it. With the intention of accelerating this process and guaranteeing an appropriate visualization of the data, we are looking to semi-automatize the process to help the users with the decision-making along it. To contribute to this semi-automation, it is useful to have metrics that characterize different important aspects of the visualization techniques, such as data representation visibility. Besides, scatterplots are a widely used technique to visualize scalar datasets. In this context, this work presents a metric that evaluates data representation visibility considering glyph visibility in scatterplots. We defined a metric that estimates the proportion of glyphs that will be visible regardless of the drawing order, and it depends on the number of items in the dataset, the size of the window, and the size of the glyphs that will represent the data. To define and approximate the metric, we experimented with several random datasets for which both dimensions followed a normal distribution. This metric constitutes an alternative to characterize scatterplots and collaborates in the semi-automation of the user’s decisions along the visualization process. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-06-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/8136 |
| url |
https://digital.cic.gba.gob.ar/handle/11746/8136 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1177/1473871616638892 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
SAGE |
| publisher.none.fl_str_mv |
SAGE |
| dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
| reponame_str |
CIC Digital (CICBA) |
| collection |
CIC Digital (CICBA) |
| instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| instacron_str |
CICBA |
| institution |
CICBA |
| repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
| _version_ |
1852581548526665728 |
| score |
13.075124 |