Some stylized facts of the Bitcoin market
- Autores
- Bariviera, Aurelio F.; Basgalla, María José; Hasperué, Waldo; Naiouf, Marcelo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión enviada
- Descripción
- In recent years a new type of tradable assets appeared, generically known as cryptocurrencies. Among them, the most widespread is Bitcoin. Given its novelty, this paper investigates some statistical properties of the Bitcoin market. This study compares Bitcoin and standard currencies dynamics and focuses on the analysis of returns at different time scales. We test the presence of long memory in return time series from 2011 to 2017, using transaction data from one Bitcoin platform. We compute the Hurst exponent by means of the Detrended Fluctuation Analysis method, using a sliding window in order to measure long range dependence. We detect that Hurst exponents changes significantly during the first years of existence of Bitcoin, tending to stabilize in recent times. Additionally, multiscale analysis shows a similar behavior of the Hurst exponent, implying a self-similar process.
- Materia
-
Ingenierías y Tecnologías
Bitcoin
Hurst
DFA
Long memory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/8578
Ver los metadatos del registro completo
id |
CICBA_46e2c6afa4af67bff37686f204eb4862 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/8578 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Some stylized facts of the Bitcoin marketBariviera, Aurelio F.Basgalla, María JoséHasperué, WaldoNaiouf, MarceloIngenierías y TecnologíasBitcoinHurstDFALong memoryIn recent years a new type of tradable assets appeared, generically known as cryptocurrencies. Among them, the most widespread is Bitcoin. Given its novelty, this paper investigates some statistical properties of the Bitcoin market. This study compares Bitcoin and standard currencies dynamics and focuses on the analysis of returns at different time scales. We test the presence of long memory in return time series from 2011 to 2017, using transaction data from one Bitcoin platform. We compute the Hurst exponent by means of the Detrended Fluctuation Analysis method, using a sliding window in order to measure long range dependence. We detect that Hurst exponents changes significantly during the first years of existence of Bitcoin, tending to stabilize in recent times. Additionally, multiscale analysis shows a similar behavior of the Hurst exponent, implying a self-similar process. <ul style= margin-left:0px; margin-right:0px > </ul>2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/8578enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:52Zoai:digital.cic.gba.gob.ar:11746/8578Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:52.913CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Some stylized facts of the Bitcoin market |
title |
Some stylized facts of the Bitcoin market |
spellingShingle |
Some stylized facts of the Bitcoin market Bariviera, Aurelio F. Ingenierías y Tecnologías Bitcoin Hurst DFA Long memory |
title_short |
Some stylized facts of the Bitcoin market |
title_full |
Some stylized facts of the Bitcoin market |
title_fullStr |
Some stylized facts of the Bitcoin market |
title_full_unstemmed |
Some stylized facts of the Bitcoin market |
title_sort |
Some stylized facts of the Bitcoin market |
dc.creator.none.fl_str_mv |
Bariviera, Aurelio F. Basgalla, María José Hasperué, Waldo Naiouf, Marcelo |
author |
Bariviera, Aurelio F. |
author_facet |
Bariviera, Aurelio F. Basgalla, María José Hasperué, Waldo Naiouf, Marcelo |
author_role |
author |
author2 |
Basgalla, María José Hasperué, Waldo Naiouf, Marcelo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ingenierías y Tecnologías Bitcoin Hurst DFA Long memory |
topic |
Ingenierías y Tecnologías Bitcoin Hurst DFA Long memory |
dc.description.none.fl_txt_mv |
In recent years a new type of tradable assets appeared, generically known as cryptocurrencies. Among them, the most widespread is Bitcoin. Given its novelty, this paper investigates some statistical properties of the Bitcoin market. This study compares Bitcoin and standard currencies dynamics and focuses on the analysis of returns at different time scales. We test the presence of long memory in return time series from 2011 to 2017, using transaction data from one Bitcoin platform. We compute the Hurst exponent by means of the Detrended Fluctuation Analysis method, using a sliding window in order to measure long range dependence. We detect that Hurst exponents changes significantly during the first years of existence of Bitcoin, tending to stabilize in recent times. Additionally, multiscale analysis shows a similar behavior of the Hurst exponent, implying a self-similar process. <ul style= margin-left:0px; margin-right:0px > </ul> |
description |
In recent years a new type of tradable assets appeared, generically known as cryptocurrencies. Among them, the most widespread is Bitcoin. Given its novelty, this paper investigates some statistical properties of the Bitcoin market. This study compares Bitcoin and standard currencies dynamics and focuses on the analysis of returns at different time scales. We test the presence of long memory in return time series from 2011 to 2017, using transaction data from one Bitcoin platform. We compute the Hurst exponent by means of the Detrended Fluctuation Analysis method, using a sliding window in order to measure long range dependence. We detect that Hurst exponents changes significantly during the first years of existence of Bitcoin, tending to stabilize in recent times. Additionally, multiscale analysis shows a similar behavior of the Hurst exponent, implying a self-similar process. <ul style= margin-left:0px; margin-right:0px > </ul> |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/8578 |
url |
https://digital.cic.gba.gob.ar/handle/11746/8578 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618582850273280 |
score |
13.069144 |