Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering
- Autores
- Cortizo, María Susana; Molinuevo, Silvina; Cortizo, Ana María
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión enviada
- Descripción
- Biodegradable and biocompatible polymeric scaffolds have been recently introduced for tissue regeneration purpose. In the present study we aimed to develop polymeric-based scaffolds for bone regeneration. Two polyesters, poly-β-propiolactone (PBPL), poly-ε-caprolactone (PCPL) and two polyfumarates, polydiisopropyl fumarate (PDIPF), polydicyclohexyl fumarate (PDCF) were chosen to prepare films which can support osteoblastic growth. Scanning electron microscopy and water contact angle were used to characterize the matrices. Biodegradation studies were performed both in PBS buffer and using an in vitro macrophage degradation assay. Mouse calvaria-derived MC3T3E1 cells and UMR106 rat osteosarcoma cell lines were used to perform biocompatibility and cytotoxicity studies. The polyesters, the most hydrophilic polymers studied, showed a rougher and more porous surfaces than the polyfumarates. Under acellular conditions, only PBPL was degraded by hydrolytic mechanisms. However, macrophages performed an active degradation of all polymeric films. Osteoblasts developed well-defined actin fibres without evidence of cytotoxicity when growing on the films. The number of UMR106 osteoblasts that adhered to the PBPL-based film was higher than that of the cells attached to the PECL and polyfumarates (PDIPF and PDCF) matrices. Both UMR106 and MC3T3E1 osteoblastic lines showed protein levels comparable to control conditions, demonstrating that they grew well on all surfaces. However, UMR106 cells showed a significant increase in proliferation on polyester-derived scaffolds (PBPL and PECL). The alkaline phosphatase activity of UMR106, an osteoblastic marker, was significantly higher than that of control plastic dishes. MC3T3E1 cells expressed similar levels of this differentiation marker in all polymeric matrices. We found similar collagen protein content after 48 h culture of UMR106 cells on all surfaces. However, important differences were evident in the MC3T3E1 line. In conclusion, the synthetic polymeric-based scaffold we have developed and studied supports adhesion, growth and differentiation of two osteoblastic cell lines, suggesting that they could be useful in bone tissue regeneration. Copyright 2008 John Wiley & Sons, Ltd.
- Materia
-
Ciencias Químicas
bone tissue engineering
biocompatibility
polyesters
polydialkyl fumarates
biodegradation
film morphology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/4525
Ver los metadatos del registro completo
id |
CICBA_382aab98d1c84d08311041c4cea0ee2f |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/4525 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineeringCortizo, María SusanaMolinuevo, SilvinaCortizo, Ana MaríaCiencias Químicasbone tissue engineeringbiocompatibilitypolyesterspolydialkyl fumaratesbiodegradationfilm morphologyBiodegradable and biocompatible polymeric scaffolds have been recently introduced for tissue regeneration purpose. In the present study we aimed to develop polymeric-based scaffolds for bone regeneration. Two polyesters, poly-β-propiolactone (PBPL), poly-ε-caprolactone (PCPL) and two polyfumarates, polydiisopropyl fumarate (PDIPF), polydicyclohexyl fumarate (PDCF) were chosen to prepare films which can support osteoblastic growth. Scanning electron microscopy and water contact angle were used to characterize the matrices. Biodegradation studies were performed both in PBS buffer and using an in vitro macrophage degradation assay. Mouse calvaria-derived MC3T3E1 cells and UMR106 rat osteosarcoma cell lines were used to perform biocompatibility and cytotoxicity studies. The polyesters, the most hydrophilic polymers studied, showed a rougher and more porous surfaces than the polyfumarates. Under acellular conditions, only PBPL was degraded by hydrolytic mechanisms. However, macrophages performed an active degradation of all polymeric films. Osteoblasts developed well-defined actin fibres without evidence of cytotoxicity when growing on the films. The number of UMR106 osteoblasts that adhered to the PBPL-based film was higher than that of the cells attached to the PECL and polyfumarates (PDIPF and PDCF) matrices. Both UMR106 and MC3T3E1 osteoblastic lines showed protein levels comparable to control conditions, demonstrating that they grew well on all surfaces. However, UMR106 cells showed a significant increase in proliferation on polyester-derived scaffolds (PBPL and PECL). The alkaline phosphatase activity of UMR106, an osteoblastic marker, was significantly higher than that of control plastic dishes. MC3T3E1 cells expressed similar levels of this differentiation marker in all polymeric matrices. We found similar collagen protein content after 48 h culture of UMR106 cells on all surfaces. However, important differences were evident in the MC3T3E1 line. In conclusion, the synthetic polymeric-based scaffold we have developed and studied supports adhesion, growth and differentiation of two osteoblastic cell lines, suggesting that they could be useful in bone tissue regeneration. Copyright 2008 John Wiley & Sons, Ltd.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/4525enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:02Zoai:digital.cic.gba.gob.ar:11746/4525Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:02.744CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering |
title |
Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering |
spellingShingle |
Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering Cortizo, María Susana Ciencias Químicas bone tissue engineering biocompatibility polyesters polydialkyl fumarates biodegradation film morphology |
title_short |
Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering |
title_full |
Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering |
title_fullStr |
Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering |
title_full_unstemmed |
Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering |
title_sort |
Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering |
dc.creator.none.fl_str_mv |
Cortizo, María Susana Molinuevo, Silvina Cortizo, Ana María |
author |
Cortizo, María Susana |
author_facet |
Cortizo, María Susana Molinuevo, Silvina Cortizo, Ana María |
author_role |
author |
author2 |
Molinuevo, Silvina Cortizo, Ana María |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Químicas bone tissue engineering biocompatibility polyesters polydialkyl fumarates biodegradation film morphology |
topic |
Ciencias Químicas bone tissue engineering biocompatibility polyesters polydialkyl fumarates biodegradation film morphology |
dc.description.none.fl_txt_mv |
Biodegradable and biocompatible polymeric scaffolds have been recently introduced for tissue regeneration purpose. In the present study we aimed to develop polymeric-based scaffolds for bone regeneration. Two polyesters, poly-β-propiolactone (PBPL), poly-ε-caprolactone (PCPL) and two polyfumarates, polydiisopropyl fumarate (PDIPF), polydicyclohexyl fumarate (PDCF) were chosen to prepare films which can support osteoblastic growth. Scanning electron microscopy and water contact angle were used to characterize the matrices. Biodegradation studies were performed both in PBS buffer and using an in vitro macrophage degradation assay. Mouse calvaria-derived MC3T3E1 cells and UMR106 rat osteosarcoma cell lines were used to perform biocompatibility and cytotoxicity studies. The polyesters, the most hydrophilic polymers studied, showed a rougher and more porous surfaces than the polyfumarates. Under acellular conditions, only PBPL was degraded by hydrolytic mechanisms. However, macrophages performed an active degradation of all polymeric films. Osteoblasts developed well-defined actin fibres without evidence of cytotoxicity when growing on the films. The number of UMR106 osteoblasts that adhered to the PBPL-based film was higher than that of the cells attached to the PECL and polyfumarates (PDIPF and PDCF) matrices. Both UMR106 and MC3T3E1 osteoblastic lines showed protein levels comparable to control conditions, demonstrating that they grew well on all surfaces. However, UMR106 cells showed a significant increase in proliferation on polyester-derived scaffolds (PBPL and PECL). The alkaline phosphatase activity of UMR106, an osteoblastic marker, was significantly higher than that of control plastic dishes. MC3T3E1 cells expressed similar levels of this differentiation marker in all polymeric matrices. We found similar collagen protein content after 48 h culture of UMR106 cells on all surfaces. However, important differences were evident in the MC3T3E1 line. In conclusion, the synthetic polymeric-based scaffold we have developed and studied supports adhesion, growth and differentiation of two osteoblastic cell lines, suggesting that they could be useful in bone tissue regeneration. Copyright 2008 John Wiley & Sons, Ltd. |
description |
Biodegradable and biocompatible polymeric scaffolds have been recently introduced for tissue regeneration purpose. In the present study we aimed to develop polymeric-based scaffolds for bone regeneration. Two polyesters, poly-β-propiolactone (PBPL), poly-ε-caprolactone (PCPL) and two polyfumarates, polydiisopropyl fumarate (PDIPF), polydicyclohexyl fumarate (PDCF) were chosen to prepare films which can support osteoblastic growth. Scanning electron microscopy and water contact angle were used to characterize the matrices. Biodegradation studies were performed both in PBS buffer and using an in vitro macrophage degradation assay. Mouse calvaria-derived MC3T3E1 cells and UMR106 rat osteosarcoma cell lines were used to perform biocompatibility and cytotoxicity studies. The polyesters, the most hydrophilic polymers studied, showed a rougher and more porous surfaces than the polyfumarates. Under acellular conditions, only PBPL was degraded by hydrolytic mechanisms. However, macrophages performed an active degradation of all polymeric films. Osteoblasts developed well-defined actin fibres without evidence of cytotoxicity when growing on the films. The number of UMR106 osteoblasts that adhered to the PBPL-based film was higher than that of the cells attached to the PECL and polyfumarates (PDIPF and PDCF) matrices. Both UMR106 and MC3T3E1 osteoblastic lines showed protein levels comparable to control conditions, demonstrating that they grew well on all surfaces. However, UMR106 cells showed a significant increase in proliferation on polyester-derived scaffolds (PBPL and PECL). The alkaline phosphatase activity of UMR106, an osteoblastic marker, was significantly higher than that of control plastic dishes. MC3T3E1 cells expressed similar levels of this differentiation marker in all polymeric matrices. We found similar collagen protein content after 48 h culture of UMR106 cells on all surfaces. However, important differences were evident in the MC3T3E1 line. In conclusion, the synthetic polymeric-based scaffold we have developed and studied supports adhesion, growth and differentiation of two osteoblastic cell lines, suggesting that they could be useful in bone tissue regeneration. Copyright 2008 John Wiley & Sons, Ltd. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/4525 |
url |
https://digital.cic.gba.gob.ar/handle/11746/4525 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618595476176896 |
score |
13.070432 |