Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinase...
- Autores
- Cortizo, Ana María; Lettieri, M.G.; Barrio, D.A.; Mercer, N.; Etcheverry, S.B.; McCarthy, Antonio Desmond
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión enviada
- Descripción
- An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage.
- Materia
-
Ciencias Químicas
advanced glycation end-products
receptor for advanced glycation end-products
extracellular signal-regulated kinases
osteoblasts
bone - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/3929
Ver los metadatos del registro completo
id |
CICBA_1b0c748e14b61c7c6e9f22bdd06eb497 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/3929 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)Cortizo, Ana MaríaLettieri, M.G.Barrio, D.A.Mercer, N.Etcheverry, S.B.McCarthy, Antonio DesmondCiencias Químicasadvanced glycation end-productsreceptor for advanced glycation end-productsextracellular signal-regulated kinasesosteoblastsboneAn increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage.2003-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3929enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:48Zoai:digital.cic.gba.gob.ar:11746/3929Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:49.118CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK) |
title |
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK) |
spellingShingle |
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK) Cortizo, Ana María Ciencias Químicas advanced glycation end-products receptor for advanced glycation end-products extracellular signal-regulated kinases osteoblasts bone |
title_short |
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK) |
title_full |
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK) |
title_fullStr |
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK) |
title_full_unstemmed |
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK) |
title_sort |
Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK) |
dc.creator.none.fl_str_mv |
Cortizo, Ana María Lettieri, M.G. Barrio, D.A. Mercer, N. Etcheverry, S.B. McCarthy, Antonio Desmond |
author |
Cortizo, Ana María |
author_facet |
Cortizo, Ana María Lettieri, M.G. Barrio, D.A. Mercer, N. Etcheverry, S.B. McCarthy, Antonio Desmond |
author_role |
author |
author2 |
Lettieri, M.G. Barrio, D.A. Mercer, N. Etcheverry, S.B. McCarthy, Antonio Desmond |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Químicas advanced glycation end-products receptor for advanced glycation end-products extracellular signal-regulated kinases osteoblasts bone |
topic |
Ciencias Químicas advanced glycation end-products receptor for advanced glycation end-products extracellular signal-regulated kinases osteoblasts bone |
dc.description.none.fl_txt_mv |
An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage. |
description |
An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/3929 |
url |
https://digital.cic.gba.gob.ar/handle/11746/3929 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618578123292672 |
score |
13.070432 |