Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinase...

Autores
Cortizo, Ana María; Lettieri, M.G.; Barrio, D.A.; Mercer, N.; Etcheverry, S.B.; McCarthy, Antonio Desmond
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión enviada
Descripción
An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage.
Materia
Ciencias Químicas
advanced glycation end-products
receptor for advanced glycation end-products
extracellular signal-regulated kinases
osteoblasts
bone
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/3929

id CICBA_1b0c748e14b61c7c6e9f22bdd06eb497
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/3929
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)Cortizo, Ana MaríaLettieri, M.G.Barrio, D.A.Mercer, N.Etcheverry, S.B.McCarthy, Antonio DesmondCiencias Químicasadvanced glycation end-productsreceptor for advanced glycation end-productsextracellular signal-regulated kinasesosteoblastsboneAn increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage.2003-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3929enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:48Zoai:digital.cic.gba.gob.ar:11746/3929Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:49.118CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)
title Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)
spellingShingle Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)
Cortizo, Ana María
Ciencias Químicas
advanced glycation end-products
receptor for advanced glycation end-products
extracellular signal-regulated kinases
osteoblasts
bone
title_short Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)
title_full Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)
title_fullStr Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)
title_full_unstemmed Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)
title_sort Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK)
dc.creator.none.fl_str_mv Cortizo, Ana María
Lettieri, M.G.
Barrio, D.A.
Mercer, N.
Etcheverry, S.B.
McCarthy, Antonio Desmond
author Cortizo, Ana María
author_facet Cortizo, Ana María
Lettieri, M.G.
Barrio, D.A.
Mercer, N.
Etcheverry, S.B.
McCarthy, Antonio Desmond
author_role author
author2 Lettieri, M.G.
Barrio, D.A.
Mercer, N.
Etcheverry, S.B.
McCarthy, Antonio Desmond
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Químicas
advanced glycation end-products
receptor for advanced glycation end-products
extracellular signal-regulated kinases
osteoblasts
bone
topic Ciencias Químicas
advanced glycation end-products
receptor for advanced glycation end-products
extracellular signal-regulated kinases
osteoblasts
bone
dc.description.none.fl_txt_mv An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage.
description An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24-72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites forAGEs, with both higher- and lower-affinity sites now being apparent. Medium-term ( 1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage.
publishDate 2003
dc.date.none.fl_str_mv 2003-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/submittedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str submittedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/3929
url https://digital.cic.gba.gob.ar/handle/11746/3929
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618578123292672
score 13.070432