Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento

Autores
Kogan, Adriana; Rancan, Claudio; Britos, Paola; Pesado, Patricia Mabel; García Martínez, Ramón
Año de publicación
2007
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información.\nUn procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos.\nUna de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos.\nEn cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja.
Eje: Agentes y Sistemas Inteligentes
Materia
Ciencias de la Computación
Árboles de Decisión
algoritmos TDIDT
Knowledge Discovery
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/3714

id CICBA_14b89fd2279b156ca24169eb10764e5f
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/3714
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimientoKogan, AdrianaRancan, ClaudioBritos, PaolaPesado, Patricia MabelGarcía Martínez, RamónCiencias de la ComputaciónÁrboles de Decisiónalgoritmos TDIDTKnowledge DiscoveryEl descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información.\nUn procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos.\nUna de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos.\nEn cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja.Eje: Agentes y Sistemas Inteligentes2007-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3714spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:12Zoai:digital.cic.gba.gob.ar:11746/3714Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:13.029CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
title Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
spellingShingle Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
Kogan, Adriana
Ciencias de la Computación
Árboles de Decisión
algoritmos TDIDT
Knowledge Discovery
title_short Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
title_full Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
title_fullStr Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
title_full_unstemmed Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
title_sort Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
dc.creator.none.fl_str_mv Kogan, Adriana
Rancan, Claudio
Britos, Paola
Pesado, Patricia Mabel
García Martínez, Ramón
author Kogan, Adriana
author_facet Kogan, Adriana
Rancan, Claudio
Britos, Paola
Pesado, Patricia Mabel
García Martínez, Ramón
author_role author
author2 Rancan, Claudio
Britos, Paola
Pesado, Patricia Mabel
García Martínez, Ramón
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias de la Computación
Árboles de Decisión
algoritmos TDIDT
Knowledge Discovery
topic Ciencias de la Computación
Árboles de Decisión
algoritmos TDIDT
Knowledge Discovery
dc.description.none.fl_txt_mv El descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información.\nUn procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos.\nUna de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos.\nEn cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja.
Eje: Agentes y Sistemas Inteligentes
description El descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información.\nUn procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos.\nUna de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos.\nEn cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja.
publishDate 2007
dc.date.none.fl_str_mv 2007-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/3714
url https://digital.cic.gba.gob.ar/handle/11746/3714
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618608590716928
score 13.070432