Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
- Autores
- Kogan, Adriana; Rancan, Claudio; Britos, Paola; Pesado, Patricia Mabel; García Martínez, Ramón
- Año de publicación
- 2007
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información.\nUn procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos.\nUna de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos.\nEn cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja.
Eje: Agentes y Sistemas Inteligentes - Materia
-
Ciencias de la Computación
Árboles de Decisión
algoritmos TDIDT
Knowledge Discovery - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/3714
Ver los metadatos del registro completo
id |
CICBA_14b89fd2279b156ca24169eb10764e5f |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/3714 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimientoKogan, AdrianaRancan, ClaudioBritos, PaolaPesado, Patricia MabelGarcía Martínez, RamónCiencias de la ComputaciónÁrboles de Decisiónalgoritmos TDIDTKnowledge DiscoveryEl descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información.\nUn procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos.\nUna de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos.\nEn cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja.Eje: Agentes y Sistemas Inteligentes2007-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3714spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:12Zoai:digital.cic.gba.gob.ar:11746/3714Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:13.029CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
spellingShingle |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento Kogan, Adriana Ciencias de la Computación Árboles de Decisión algoritmos TDIDT Knowledge Discovery |
title_short |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title_full |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title_fullStr |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title_full_unstemmed |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title_sort |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
dc.creator.none.fl_str_mv |
Kogan, Adriana Rancan, Claudio Britos, Paola Pesado, Patricia Mabel García Martínez, Ramón |
author |
Kogan, Adriana |
author_facet |
Kogan, Adriana Rancan, Claudio Britos, Paola Pesado, Patricia Mabel García Martínez, Ramón |
author_role |
author |
author2 |
Rancan, Claudio Britos, Paola Pesado, Patricia Mabel García Martínez, Ramón |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación Árboles de Decisión algoritmos TDIDT Knowledge Discovery |
topic |
Ciencias de la Computación Árboles de Decisión algoritmos TDIDT Knowledge Discovery |
dc.description.none.fl_txt_mv |
El descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información.\nUn procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos.\nUna de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos.\nEn cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja. Eje: Agentes y Sistemas Inteligentes |
description |
El descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información.\nUn procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos.\nUna de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos.\nEn cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/3714 |
url |
https://digital.cic.gba.gob.ar/handle/11746/3714 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618608590716928 |
score |
13.070432 |