Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento
- Autores
- Kogan, A.; Rancan, Claudio; Britos, Paola Verónica; Pesado, Patricia Mabel; García Martínez, Ramón
- Año de publicación
- 2007
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información. Un procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos. Una de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos. En cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja.
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
integración de agrupamiento e inducción
Intelligent agents
Knowledge Representation Formalisms and Methods
descubrimiento
conocimiento - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/20152
Ver los metadatos del registro completo
id |
SEDICI_122364897afe77e170716b64682c04f4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/20152 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimientoKogan, A.Rancan, ClaudioBritos, Paola VerónicaPesado, Patricia MabelGarcía Martínez, RamónCiencias Informáticasintegración de agrupamiento e inducciónIntelligent agentsKnowledge Representation Formalisms and MethodsdescubrimientoconocimientoEl descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información. Un procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos. Una de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos. En cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja.Eje: Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2007-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf11-15http://sedici.unlp.edu.ar/handle/10915/20152spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:10Zoai:sedici.unlp.edu.ar:10915/20152Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:10.431SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
spellingShingle |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento Kogan, A. Ciencias Informáticas integración de agrupamiento e inducción Intelligent agents Knowledge Representation Formalisms and Methods descubrimiento conocimiento |
title_short |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title_full |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title_fullStr |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title_full_unstemmed |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
title_sort |
Algunos resultados experimentales de la integración de agrupamiento e inducción como método de descubrimiento de conocimiento |
dc.creator.none.fl_str_mv |
Kogan, A. Rancan, Claudio Britos, Paola Verónica Pesado, Patricia Mabel García Martínez, Ramón |
author |
Kogan, A. |
author_facet |
Kogan, A. Rancan, Claudio Britos, Paola Verónica Pesado, Patricia Mabel García Martínez, Ramón |
author_role |
author |
author2 |
Rancan, Claudio Britos, Paola Verónica Pesado, Patricia Mabel García Martínez, Ramón |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas integración de agrupamiento e inducción Intelligent agents Knowledge Representation Formalisms and Methods descubrimiento conocimiento |
topic |
Ciencias Informáticas integración de agrupamiento e inducción Intelligent agents Knowledge Representation Formalisms and Methods descubrimiento conocimiento |
dc.description.none.fl_txt_mv |
El descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información. Un procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos. Una de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos. En cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja. Eje: Agentes y Sistemas Inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
El descubrimiento de conocimiento (KD Knowledge Discovery) consiste en la búsqueda de patrones interesantes y de regularidades importantes en grandes bases de información. Al hablar de descubrimiento de conocimiento basado en sistemas inteligentes nos referimos específicamente a la aplicación de métodos de aprendizaje automático u otros métodos similares, para descubrir y enumerar patrones presentes en dicha información. Un procedimiento recurrente a la hora de realizar descubrimiento de conocimiento basado en sistemas inteligentes consiste en tomar el conjunto de datos a estudiar, aplicar un algoritmo de agrupamiento para separarlo en distintos grupos (clases) y sobre cada uno de ellos, intentar generar reglas que caractericen su conformación, utilizando otro algoritmo a tales efectos. Una de las opciones para llevar adelante el proceso de agrupamiento está dada por el uso de los mapas auto-organizados, los cuales consisten en un algoritmo de redes neuronales utilizado para una gran variedad de aplicaciones, principalmente para problemas de ingeniería, pero también para análisis de datos. En cuanto a la inducción de reglas, dada la caracterización de las entidades que se utilizan comúnmente en descubrimiento de conocimiento, fuertemente basada en los valores de sus atributos y no en las relaciones establecidas entre estos, se suelen emplear métodos basados en atributos. Uno de los más claros y difundidos son los árboles de decisión o clasificación en los cuales se cuenta con nodos que modelizan cada atributo, ramas que se originan en estos nodos, una por cada valor que el atributo puede tomar, y finalmente las hojas que corresponden a las clases individuales. Recorriendo un árbol desde su nodo padre hasta las distintas hojas, se pueden generar de forma muy simple las reglas a las cuales la clasificación responde. Una de las herramientas aplicadas al mencionado proceso es la familia de algoritmos TDIDT (Top Down Induction Decision Trees). Sin embargo, estos pasos se realizan únicamente bajo la presunción de obtener un resultado representativo del conjunto de datos sobre el que se trabaja. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/20152 |
url |
http://sedici.unlp.edu.ar/handle/10915/20152 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-763-075-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 11-15 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615798608363520 |
score |
13.070432 |