Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses
- Autores
- Fernández Do Porto, D.A.; Auzmendi, J.; Peña, D.; García, V.E.; Moffatt, L.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Immune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions. Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns their posterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer and T Cells together with the interpheron (IFN)-γ and tumor necrosis factor (TNF)-α levels in the media culture. Fast and complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells. Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFN-γ levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect of CD137 signaling on TNF-α production were based on a decrease of TNF-α production by APC and, perhaps, on the increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling during human response against Mycobacterium tuberculosis. © 2013 Fernández Do Porto et al.
Fil:Fernández Do Porto, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Auzmendi, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Peña, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:García, V.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Moffatt, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- PLoS ONE 2013;8(2)
- Materia
-
CD137 antigen
cytokine
gamma interferon
tuberculostatic agent
tumor necrosis factor alpha
antigen presenting cell
article
Bayes theorem
cell survival
clinical article
culture medium
cytokine production
human
immune response
in vitro study
lung tuberculosis
Monte Carlo method
Mycobacterium tuberculosis
natural killer cell
nonhuman
nonlinear system
probability
qualitative analysis
quantitative analysis
T lymphocyte
thermodynamics
4-1BB Ligand
Adaptive Immunity
Adult
Antigen-Presenting Cells
Antigens, CD137
Antigens, CD56
Bayes Theorem
Cellular Microenvironment
Cytokines
Humans
Immunity, Innate
Intracellular Space
Killer Cells, Natural
Models, Biological
Mycobacterium tuberculosis
Signal Transduction
T-Lymphocytes
Thermodynamics
Tuberculosis
Uncertainty - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_19326203_v8_n2_p_FernandezDoPorto
Ver los metadatos del registro completo
id |
BDUBAFCEN_f8a8ee424f1544d1db02446da0550bab |
---|---|
oai_identifier_str |
paperaa:paper_19326203_v8_n2_p_FernandezDoPorto |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro ResponsesFernández Do Porto, D.A.Auzmendi, J.Peña, D.García, V.E.Moffatt, L.CD137 antigencytokinegamma interferontuberculostatic agenttumor necrosis factor alphaantigen presenting cellarticleBayes theoremcell survivalclinical articleculture mediumcytokine productionhumanimmune responsein vitro studylung tuberculosisMonte Carlo methodMycobacterium tuberculosisnatural killer cellnonhumannonlinear systemprobabilityqualitative analysisquantitative analysisT lymphocytethermodynamics4-1BB LigandAdaptive ImmunityAdultAntigen-Presenting CellsAntigens, CD137Antigens, CD56Bayes TheoremCellular MicroenvironmentCytokinesHumansImmunity, InnateIntracellular SpaceKiller Cells, NaturalModels, BiologicalMycobacterium tuberculosisSignal TransductionT-LymphocytesThermodynamicsTuberculosisUncertaintyImmune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions. Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns their posterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer and T Cells together with the interpheron (IFN)-γ and tumor necrosis factor (TNF)-α levels in the media culture. Fast and complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells. Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFN-γ levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect of CD137 signaling on TNF-α production were based on a decrease of TNF-α production by APC and, perhaps, on the increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling during human response against Mycobacterium tuberculosis. © 2013 Fernández Do Porto et al.Fil:Fernández Do Porto, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Auzmendi, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Peña, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:García, V.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Moffatt, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_19326203_v8_n2_p_FernandezDoPortoPLoS ONE 2013;8(2)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-11T10:21:48Zpaperaa:paper_19326203_v8_n2_p_FernandezDoPortoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-11 10:21:49.978Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses |
title |
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses |
spellingShingle |
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses Fernández Do Porto, D.A. CD137 antigen cytokine gamma interferon tuberculostatic agent tumor necrosis factor alpha antigen presenting cell article Bayes theorem cell survival clinical article culture medium cytokine production human immune response in vitro study lung tuberculosis Monte Carlo method Mycobacterium tuberculosis natural killer cell nonhuman nonlinear system probability qualitative analysis quantitative analysis T lymphocyte thermodynamics 4-1BB Ligand Adaptive Immunity Adult Antigen-Presenting Cells Antigens, CD137 Antigens, CD56 Bayes Theorem Cellular Microenvironment Cytokines Humans Immunity, Innate Intracellular Space Killer Cells, Natural Models, Biological Mycobacterium tuberculosis Signal Transduction T-Lymphocytes Thermodynamics Tuberculosis Uncertainty |
title_short |
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses |
title_full |
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses |
title_fullStr |
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses |
title_full_unstemmed |
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses |
title_sort |
Bayesian Approach to Model CD137 Signaling in Human M. tuberculosis In Vitro Responses |
dc.creator.none.fl_str_mv |
Fernández Do Porto, D.A. Auzmendi, J. Peña, D. García, V.E. Moffatt, L. |
author |
Fernández Do Porto, D.A. |
author_facet |
Fernández Do Porto, D.A. Auzmendi, J. Peña, D. García, V.E. Moffatt, L. |
author_role |
author |
author2 |
Auzmendi, J. Peña, D. García, V.E. Moffatt, L. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CD137 antigen cytokine gamma interferon tuberculostatic agent tumor necrosis factor alpha antigen presenting cell article Bayes theorem cell survival clinical article culture medium cytokine production human immune response in vitro study lung tuberculosis Monte Carlo method Mycobacterium tuberculosis natural killer cell nonhuman nonlinear system probability qualitative analysis quantitative analysis T lymphocyte thermodynamics 4-1BB Ligand Adaptive Immunity Adult Antigen-Presenting Cells Antigens, CD137 Antigens, CD56 Bayes Theorem Cellular Microenvironment Cytokines Humans Immunity, Innate Intracellular Space Killer Cells, Natural Models, Biological Mycobacterium tuberculosis Signal Transduction T-Lymphocytes Thermodynamics Tuberculosis Uncertainty |
topic |
CD137 antigen cytokine gamma interferon tuberculostatic agent tumor necrosis factor alpha antigen presenting cell article Bayes theorem cell survival clinical article culture medium cytokine production human immune response in vitro study lung tuberculosis Monte Carlo method Mycobacterium tuberculosis natural killer cell nonhuman nonlinear system probability qualitative analysis quantitative analysis T lymphocyte thermodynamics 4-1BB Ligand Adaptive Immunity Adult Antigen-Presenting Cells Antigens, CD137 Antigens, CD56 Bayes Theorem Cellular Microenvironment Cytokines Humans Immunity, Innate Intracellular Space Killer Cells, Natural Models, Biological Mycobacterium tuberculosis Signal Transduction T-Lymphocytes Thermodynamics Tuberculosis Uncertainty |
dc.description.none.fl_txt_mv |
Immune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions. Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns their posterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer and T Cells together with the interpheron (IFN)-γ and tumor necrosis factor (TNF)-α levels in the media culture. Fast and complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells. Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFN-γ levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect of CD137 signaling on TNF-α production were based on a decrease of TNF-α production by APC and, perhaps, on the increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling during human response against Mycobacterium tuberculosis. © 2013 Fernández Do Porto et al. Fil:Fernández Do Porto, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Auzmendi, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Peña, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:García, V.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Moffatt, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Immune responses are qualitatively and quantitatively influenced by a complex network of receptor-ligand interactions. Among them, the CD137:CD137L pathway is known to modulate innate and adaptive human responses against Mycobacterium tuberculosis. However, the underlying mechanisms of this regulation remain unclear. In this work, we developed a Bayesian Computational Model (BCM) of in vitro CD137 signaling, devised to fit previously gathered experimental data. The BCM is fed with the data and the prior distribution of the model parameters and it returns their posterior distribution and the model evidence, which allows comparing alternative signaling mechanisms. The BCM uses a coupled system of non-linear differential equations to describe the dynamics of Antigen Presenting Cells, Natural Killer and T Cells together with the interpheron (IFN)-γ and tumor necrosis factor (TNF)-α levels in the media culture. Fast and complete mixing of the media is assumed. The prior distribution of the parameters that describe the dynamics of the immunological response was obtained from the literature and theoretical considerations Our BCM applies successively the Levenberg-Marquardt algorithm to find the maximum a posteriori likelihood (MAP); the Metropolis Markov Chain Monte Carlo method to approximate the posterior distribution of the parameters and Thermodynamic Integration to calculate the evidence of alternative hypothesis. Bayes factors provided decisive evidence favoring direct CD137 signaling on T cells. Moreover, the posterior distribution of the parameters that describe the CD137 signaling showed that the regulation of IFN-γ levels is based more on T cells survival than on direct induction. Furthermore, the mechanisms that account for the effect of CD137 signaling on TNF-α production were based on a decrease of TNF-α production by APC and, perhaps, on the increase in APC apoptosis. BCM proved to be a useful tool to gain insight on the mechanisms of CD137 signaling during human response against Mycobacterium tuberculosis. © 2013 Fernández Do Porto et al. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_19326203_v8_n2_p_FernandezDoPorto |
url |
http://hdl.handle.net/20.500.12110/paper_19326203_v8_n2_p_FernandezDoPorto |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
PLoS ONE 2013;8(2) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842975011955015680 |
score |
13.004268 |