Operador de medición en un cálculo lambda con control cuántico
- Autores
- San Martín, Nicolás
- Año de publicación
- 2023
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Díaz-Caro, Alejandro
Martínez López, Pablo Ernesto - Descripción
- En los últimos años se han desarrollado distintas extensiones al cálculo lambda buscando lenguajes de programación cuánticos siguiendo el modelo de “control cuántico”. Este modelo, a diferencia del de “control clásico”, describe las operaciones cuánticas de manera explícita, incorporando conceptos de la computación cuántica como el de las superposiciones al cálculo. Ejemplos de tales lenguajes son Lambda-S y Lambda-S1. El primero enfocado principalmente en incorporar la medición cuántica a los cálculos anteriores donde todas las operaciones son lineales. El segundo asegura que las superposiciones se mantienen en la esfera de módulo 1 haciendo que las operaciones sean isometrías, lo que es también un requisito para la computación cuántica. En esta tesis se define Lambda-S π 1 , que es un cálculo que preserva la norma de las superposiciones, asegura que las operaciones son isometrías, y a la vez incorpora la medición cuántica. Se define el lenguaje, se prueban la propiedad de subject reduction, progreso, preservación de la normal y un resultado de expresividad
Fil: San Martín, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Materia
-
CALCULO LAMBDA
COMPUTACION CUANTICA
MEDICION CUANTICA
COMPUERTAS CUANTICAS
COMPUERTAS CUANTICAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- seminario:seminario_nCOM000542_SanMartin
Ver los metadatos del registro completo
id |
BDUBAFCEN_f614322234d65d8097fe68bbd60bb8e6 |
---|---|
oai_identifier_str |
seminario:seminario_nCOM000542_SanMartin |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Operador de medición en un cálculo lambda con control cuánticoSan Martín, NicolásCALCULO LAMBDACOMPUTACION CUANTICAMEDICION CUANTICACOMPUERTAS CUANTICASCOMPUERTAS CUANTICASEn los últimos años se han desarrollado distintas extensiones al cálculo lambda buscando lenguajes de programación cuánticos siguiendo el modelo de “control cuántico”. Este modelo, a diferencia del de “control clásico”, describe las operaciones cuánticas de manera explícita, incorporando conceptos de la computación cuántica como el de las superposiciones al cálculo. Ejemplos de tales lenguajes son Lambda-S y Lambda-S1. El primero enfocado principalmente en incorporar la medición cuántica a los cálculos anteriores donde todas las operaciones son lineales. El segundo asegura que las superposiciones se mantienen en la esfera de módulo 1 haciendo que las operaciones sean isometrías, lo que es también un requisito para la computación cuántica. En esta tesis se define Lambda-S π 1 , que es un cálculo que preserva la norma de las superposiciones, asegura que las operaciones son isometrías, y a la vez incorpora la medición cuántica. Se define el lenguaje, se prueban la propiedad de subject reduction, progreso, preservación de la normal y un resultado de expresividadFil: San Martín, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesDíaz-Caro, AlejandroMartínez López, Pablo Ernesto2023info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttps://hdl.handle.net/20.500.12110/seminario_nCOM000542_SanMartinspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-04T09:49:17Zseminario:seminario_nCOM000542_SanMartinInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:49:18.358Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Operador de medición en un cálculo lambda con control cuántico |
title |
Operador de medición en un cálculo lambda con control cuántico |
spellingShingle |
Operador de medición en un cálculo lambda con control cuántico San Martín, Nicolás CALCULO LAMBDA COMPUTACION CUANTICA MEDICION CUANTICA COMPUERTAS CUANTICAS COMPUERTAS CUANTICAS |
title_short |
Operador de medición en un cálculo lambda con control cuántico |
title_full |
Operador de medición en un cálculo lambda con control cuántico |
title_fullStr |
Operador de medición en un cálculo lambda con control cuántico |
title_full_unstemmed |
Operador de medición en un cálculo lambda con control cuántico |
title_sort |
Operador de medición en un cálculo lambda con control cuántico |
dc.creator.none.fl_str_mv |
San Martín, Nicolás |
author |
San Martín, Nicolás |
author_facet |
San Martín, Nicolás |
author_role |
author |
dc.contributor.none.fl_str_mv |
Díaz-Caro, Alejandro Martínez López, Pablo Ernesto |
dc.subject.none.fl_str_mv |
CALCULO LAMBDA COMPUTACION CUANTICA MEDICION CUANTICA COMPUERTAS CUANTICAS COMPUERTAS CUANTICAS |
topic |
CALCULO LAMBDA COMPUTACION CUANTICA MEDICION CUANTICA COMPUERTAS CUANTICAS COMPUERTAS CUANTICAS |
dc.description.none.fl_txt_mv |
En los últimos años se han desarrollado distintas extensiones al cálculo lambda buscando lenguajes de programación cuánticos siguiendo el modelo de “control cuántico”. Este modelo, a diferencia del de “control clásico”, describe las operaciones cuánticas de manera explícita, incorporando conceptos de la computación cuántica como el de las superposiciones al cálculo. Ejemplos de tales lenguajes son Lambda-S y Lambda-S1. El primero enfocado principalmente en incorporar la medición cuántica a los cálculos anteriores donde todas las operaciones son lineales. El segundo asegura que las superposiciones se mantienen en la esfera de módulo 1 haciendo que las operaciones sean isometrías, lo que es también un requisito para la computación cuántica. En esta tesis se define Lambda-S π 1 , que es un cálculo que preserva la norma de las superposiciones, asegura que las operaciones son isometrías, y a la vez incorpora la medición cuántica. Se define el lenguaje, se prueban la propiedad de subject reduction, progreso, preservación de la normal y un resultado de expresividad Fil: San Martín, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
En los últimos años se han desarrollado distintas extensiones al cálculo lambda buscando lenguajes de programación cuánticos siguiendo el modelo de “control cuántico”. Este modelo, a diferencia del de “control clásico”, describe las operaciones cuánticas de manera explícita, incorporando conceptos de la computación cuántica como el de las superposiciones al cálculo. Ejemplos de tales lenguajes son Lambda-S y Lambda-S1. El primero enfocado principalmente en incorporar la medición cuántica a los cálculos anteriores donde todas las operaciones son lineales. El segundo asegura que las superposiciones se mantienen en la esfera de módulo 1 haciendo que las operaciones sean isometrías, lo que es también un requisito para la computación cuántica. En esta tesis se define Lambda-S π 1 , que es un cálculo que preserva la norma de las superposiciones, asegura que las operaciones son isometrías, y a la vez incorpora la medición cuántica. Se define el lenguaje, se prueban la propiedad de subject reduction, progreso, preservación de la normal y un resultado de expresividad |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/seminario_nCOM000542_SanMartin |
url |
https://hdl.handle.net/20.500.12110/seminario_nCOM000542_SanMartin |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340717350879232 |
score |
12.623145 |