ASR1, a stress-induced tomato protein, protects yeast from osmotic stress

Autores
Moretti, M.B.; Maskin, L.; Gudesblat, G.; García, S.C.; Iusem, N.D.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Asr1, a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5 M NaCl and 1.2 M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level. Copyright © Physiologia Plantarum 2006.
Fil:Maskin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gudesblat, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Iusem, N.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Physiol. Plant. 2006;127(1):111-118
Materia
Biosynthesis
Fruits
Genes
Glycerol
Osmosis
Yeast
Endogenous glycerol
Osmotic stress
Tomato protein
Proteins
Tomatoes
Lycopersicon esculentum
Saccharomyces cerevisiae
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00319317_v127_n1_p111_Moretti

id BDUBAFCEN_dbefe1871dc1e2a0869bbfddb9166613
oai_identifier_str paperaa:paper_00319317_v127_n1_p111_Moretti
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling ASR1, a stress-induced tomato protein, protects yeast from osmotic stressMoretti, M.B.Maskin, L.Gudesblat, G.García, S.C.Iusem, N.D.BiosynthesisFruitsGenesGlycerolOsmosisYeastEndogenous glycerolOsmotic stressTomato proteinProteinsTomatoesLycopersicon esculentumSaccharomyces cerevisiaeAsr1, a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5 M NaCl and 1.2 M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level. Copyright © Physiologia Plantarum 2006.Fil:Maskin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gudesblat, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Iusem, N.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00319317_v127_n1_p111_MorettiPhysiol. Plant. 2006;127(1):111-118reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_00319317_v127_n1_p111_MorettiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.746Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
title ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
spellingShingle ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
Moretti, M.B.
Biosynthesis
Fruits
Genes
Glycerol
Osmosis
Yeast
Endogenous glycerol
Osmotic stress
Tomato protein
Proteins
Tomatoes
Lycopersicon esculentum
Saccharomyces cerevisiae
title_short ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
title_full ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
title_fullStr ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
title_full_unstemmed ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
title_sort ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
dc.creator.none.fl_str_mv Moretti, M.B.
Maskin, L.
Gudesblat, G.
García, S.C.
Iusem, N.D.
author Moretti, M.B.
author_facet Moretti, M.B.
Maskin, L.
Gudesblat, G.
García, S.C.
Iusem, N.D.
author_role author
author2 Maskin, L.
Gudesblat, G.
García, S.C.
Iusem, N.D.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Biosynthesis
Fruits
Genes
Glycerol
Osmosis
Yeast
Endogenous glycerol
Osmotic stress
Tomato protein
Proteins
Tomatoes
Lycopersicon esculentum
Saccharomyces cerevisiae
topic Biosynthesis
Fruits
Genes
Glycerol
Osmosis
Yeast
Endogenous glycerol
Osmotic stress
Tomato protein
Proteins
Tomatoes
Lycopersicon esculentum
Saccharomyces cerevisiae
dc.description.none.fl_txt_mv Asr1, a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5 M NaCl and 1.2 M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level. Copyright © Physiologia Plantarum 2006.
Fil:Maskin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gudesblat, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Iusem, N.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Asr1, a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5 M NaCl and 1.2 M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level. Copyright © Physiologia Plantarum 2006.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00319317_v127_n1_p111_Moretti
url http://hdl.handle.net/20.500.12110/paper_00319317_v127_n1_p111_Moretti
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Physiol. Plant. 2006;127(1):111-118
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340705659256832
score 12.623145