ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
- Autores
- Moretti, M.B.; Maskin, L.; Gudesblat, G.; García, S.C.; Iusem, N.D.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Asr1, a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5 M NaCl and 1.2 M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level. Copyright © Physiologia Plantarum 2006.
Fil:Maskin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Gudesblat, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Iusem, N.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Physiol. Plant. 2006;127(1):111-118
- Materia
-
Biosynthesis
Fruits
Genes
Glycerol
Osmosis
Yeast
Endogenous glycerol
Osmotic stress
Tomato protein
Proteins
Tomatoes
Lycopersicon esculentum
Saccharomyces cerevisiae - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00319317_v127_n1_p111_Moretti
Ver los metadatos del registro completo
id |
BDUBAFCEN_dbefe1871dc1e2a0869bbfddb9166613 |
---|---|
oai_identifier_str |
paperaa:paper_00319317_v127_n1_p111_Moretti |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
ASR1, a stress-induced tomato protein, protects yeast from osmotic stressMoretti, M.B.Maskin, L.Gudesblat, G.García, S.C.Iusem, N.D.BiosynthesisFruitsGenesGlycerolOsmosisYeastEndogenous glycerolOsmotic stressTomato proteinProteinsTomatoesLycopersicon esculentumSaccharomyces cerevisiaeAsr1, a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5 M NaCl and 1.2 M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level. Copyright © Physiologia Plantarum 2006.Fil:Maskin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gudesblat, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Iusem, N.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00319317_v127_n1_p111_MorettiPhysiol. Plant. 2006;127(1):111-118reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:38Zpaperaa:paper_00319317_v127_n1_p111_MorettiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:39.746Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress |
title |
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress |
spellingShingle |
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress Moretti, M.B. Biosynthesis Fruits Genes Glycerol Osmosis Yeast Endogenous glycerol Osmotic stress Tomato protein Proteins Tomatoes Lycopersicon esculentum Saccharomyces cerevisiae |
title_short |
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress |
title_full |
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress |
title_fullStr |
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress |
title_full_unstemmed |
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress |
title_sort |
ASR1, a stress-induced tomato protein, protects yeast from osmotic stress |
dc.creator.none.fl_str_mv |
Moretti, M.B. Maskin, L. Gudesblat, G. García, S.C. Iusem, N.D. |
author |
Moretti, M.B. |
author_facet |
Moretti, M.B. Maskin, L. Gudesblat, G. García, S.C. Iusem, N.D. |
author_role |
author |
author2 |
Maskin, L. Gudesblat, G. García, S.C. Iusem, N.D. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Biosynthesis Fruits Genes Glycerol Osmosis Yeast Endogenous glycerol Osmotic stress Tomato protein Proteins Tomatoes Lycopersicon esculentum Saccharomyces cerevisiae |
topic |
Biosynthesis Fruits Genes Glycerol Osmosis Yeast Endogenous glycerol Osmotic stress Tomato protein Proteins Tomatoes Lycopersicon esculentum Saccharomyces cerevisiae |
dc.description.none.fl_txt_mv |
Asr1, a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5 M NaCl and 1.2 M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level. Copyright © Physiologia Plantarum 2006. Fil:Maskin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gudesblat, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Iusem, N.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Asr1, a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5 M NaCl and 1.2 M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level. Copyright © Physiologia Plantarum 2006. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00319317_v127_n1_p111_Moretti |
url |
http://hdl.handle.net/20.500.12110/paper_00319317_v127_n1_p111_Moretti |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Physiol. Plant. 2006;127(1):111-118 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340705659256832 |
score |
12.623145 |