Sobre grafos arco-circulares propios y helly
- Autores
- Soulignac, Francisco Juan
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Lin, Min Chih
- Descripción
- Un modelo arco-circular es un par M=(C,A) donde C es un círculo y A es una familia de arcos de C. Si ningún arco se encuentra contenido en otro arco entonces decimos que M es propio, mientras que si A satisface la propiedad de Helly entonces decimos que M es Helly. Un grafo G es arco-circular si es el grafo de intersección de los arcos de un modelo arco-circular M. Si además M es propio (resp. Helly) entonces decimos que G es un grafo arco-circular propio (resp. Helly). Los grafos arco-circulares y sus subclases son estudiados con especial atención desde fines de la década de 1960, y al día de hoy la literatura al respecto es muy vasta. Esto se debe a la gran cantidad de aplicaciones que poseen en áreas tan diversas como las bases de datos, la genética, la arqueología, la psicología, la economía, etc., y a las propiedades de su estructura combinatoria. El problema de reconocimiento de grafos arco-circulares, y de varias de sus subclases, puede ser resuelto en tiempo lineal. Más aún, un modelo arco-circular puede ser generado en tiempo lineal. En esta tesis estudiamos la clase de grafos arco-circulares desde una perspectiva estructural y algorítmica, concentrándonos principalmente en las subclases de grafos arco-circulares propios y Helly.
A circular-arc model M=(C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other, then M is a proper circular-arc model, and if A satisfies the Helly Property, then M is a Helly circular-arc model. A graph G is a circular-arc graph if it is the intersection graph of the arcs of a circular-arc model M. If in addition M is a proper (resp. Helly) circular-arc model then G is a proper (resp. Helly) circular-arc graph. Circular-arc graphs and their subclasses have been the object of a great deal of attention in the literature since the late 1960's. This is because of their applications in areas as diverse as databases, genetics, archeology, psychology, economics, among others, and because of their nice combinatorial structure. Linear time recognition algorithms have been described both for the general class and for some of its subclasses. Moreover, a circular-arc model can be obtained within the same amount of time. In this thesis we study circular-arc graphs from a structural and algorithmic point of view, with our focus on the proper and Helly subclasses.
Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Materia
-
GRAFOS ARCO-CIRCULARES PROPIOS
GRAFOS ARCO-CIRCULARES HELLY
GRAFOS DE INTERVALOS
POTENCIAS DE CAMINOS
POTENCIAS DE CICLOS
ALGORITMOS DE RECONOCIMIENTO
ALGORITMOS DE TRANSFORMACION
ALGORITMOS DE RECONOCIMIENTO DINAMICOS
PROBLEMA DE ISOMORFISMO
GRAFOS CLIQUE
COMPORTAMIENTO DEL OPERADOR CLIQUE ITERADO
PROPER CIRCULAR-ARC GRAPHS
HELLY CIRCULAR-ARC GRAPHS
INTERVAL GRAPHS
POWERS OF PATHS
POWER OF CYCLES
RECOGNITION ALGORITHMS
TRANSFORMATION ALGORITHMS
DYNAMIC RECOGNITION ALGORITHMS
ISOMORPHISM PROBLEM
CLIQUE GRAPHS
K-BEHAVIOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- tesis:tesis_n4660_Soulignac
Ver los metadatos del registro completo
id |
BDUBAFCEN_d85857536dd5ed3317f3a6a57afd182c |
---|---|
oai_identifier_str |
tesis:tesis_n4660_Soulignac |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Sobre grafos arco-circulares propios y hellyOn proper and Helly circular-arc graphsSoulignac, Francisco JuanGRAFOS ARCO-CIRCULARES PROPIOSGRAFOS ARCO-CIRCULARES HELLYGRAFOS DE INTERVALOSPOTENCIAS DE CAMINOSPOTENCIAS DE CICLOSALGORITMOS DE RECONOCIMIENTOALGORITMOS DE TRANSFORMACIONALGORITMOS DE RECONOCIMIENTO DINAMICOSPROBLEMA DE ISOMORFISMOGRAFOS CLIQUECOMPORTAMIENTO DEL OPERADOR CLIQUE ITERADOPROPER CIRCULAR-ARC GRAPHSHELLY CIRCULAR-ARC GRAPHSINTERVAL GRAPHSPOWERS OF PATHSPOWER OF CYCLESRECOGNITION ALGORITHMSTRANSFORMATION ALGORITHMSDYNAMIC RECOGNITION ALGORITHMSISOMORPHISM PROBLEMCLIQUE GRAPHSK-BEHAVIORUn modelo arco-circular es un par M=(C,A) donde C es un círculo y A es una familia de arcos de C. Si ningún arco se encuentra contenido en otro arco entonces decimos que M es propio, mientras que si A satisface la propiedad de Helly entonces decimos que M es Helly. Un grafo G es arco-circular si es el grafo de intersección de los arcos de un modelo arco-circular M. Si además M es propio (resp. Helly) entonces decimos que G es un grafo arco-circular propio (resp. Helly). Los grafos arco-circulares y sus subclases son estudiados con especial atención desde fines de la década de 1960, y al día de hoy la literatura al respecto es muy vasta. Esto se debe a la gran cantidad de aplicaciones que poseen en áreas tan diversas como las bases de datos, la genética, la arqueología, la psicología, la economía, etc., y a las propiedades de su estructura combinatoria. El problema de reconocimiento de grafos arco-circulares, y de varias de sus subclases, puede ser resuelto en tiempo lineal. Más aún, un modelo arco-circular puede ser generado en tiempo lineal. En esta tesis estudiamos la clase de grafos arco-circulares desde una perspectiva estructural y algorítmica, concentrándonos principalmente en las subclases de grafos arco-circulares propios y Helly.A circular-arc model M=(C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other, then M is a proper circular-arc model, and if A satisfies the Helly Property, then M is a Helly circular-arc model. A graph G is a circular-arc graph if it is the intersection graph of the arcs of a circular-arc model M. If in addition M is a proper (resp. Helly) circular-arc model then G is a proper (resp. Helly) circular-arc graph. Circular-arc graphs and their subclasses have been the object of a great deal of attention in the literature since the late 1960's. This is because of their applications in areas as diverse as databases, genetics, archeology, psychology, economics, among others, and because of their nice combinatorial structure. Linear time recognition algorithms have been described both for the general class and for some of its subclasses. Moreover, a circular-arc model can be obtained within the same amount of time. In this thesis we study circular-arc graphs from a structural and algorithmic point of view, with our focus on the proper and Helly subclasses.Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesLin, Min Chih2010info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4660_Soulignacenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-29T13:41:31Ztesis:tesis_n4660_SoulignacInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:41:32.705Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Sobre grafos arco-circulares propios y helly On proper and Helly circular-arc graphs |
title |
Sobre grafos arco-circulares propios y helly |
spellingShingle |
Sobre grafos arco-circulares propios y helly Soulignac, Francisco Juan GRAFOS ARCO-CIRCULARES PROPIOS GRAFOS ARCO-CIRCULARES HELLY GRAFOS DE INTERVALOS POTENCIAS DE CAMINOS POTENCIAS DE CICLOS ALGORITMOS DE RECONOCIMIENTO ALGORITMOS DE TRANSFORMACION ALGORITMOS DE RECONOCIMIENTO DINAMICOS PROBLEMA DE ISOMORFISMO GRAFOS CLIQUE COMPORTAMIENTO DEL OPERADOR CLIQUE ITERADO PROPER CIRCULAR-ARC GRAPHS HELLY CIRCULAR-ARC GRAPHS INTERVAL GRAPHS POWERS OF PATHS POWER OF CYCLES RECOGNITION ALGORITHMS TRANSFORMATION ALGORITHMS DYNAMIC RECOGNITION ALGORITHMS ISOMORPHISM PROBLEM CLIQUE GRAPHS K-BEHAVIOR |
title_short |
Sobre grafos arco-circulares propios y helly |
title_full |
Sobre grafos arco-circulares propios y helly |
title_fullStr |
Sobre grafos arco-circulares propios y helly |
title_full_unstemmed |
Sobre grafos arco-circulares propios y helly |
title_sort |
Sobre grafos arco-circulares propios y helly |
dc.creator.none.fl_str_mv |
Soulignac, Francisco Juan |
author |
Soulignac, Francisco Juan |
author_facet |
Soulignac, Francisco Juan |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lin, Min Chih |
dc.subject.none.fl_str_mv |
GRAFOS ARCO-CIRCULARES PROPIOS GRAFOS ARCO-CIRCULARES HELLY GRAFOS DE INTERVALOS POTENCIAS DE CAMINOS POTENCIAS DE CICLOS ALGORITMOS DE RECONOCIMIENTO ALGORITMOS DE TRANSFORMACION ALGORITMOS DE RECONOCIMIENTO DINAMICOS PROBLEMA DE ISOMORFISMO GRAFOS CLIQUE COMPORTAMIENTO DEL OPERADOR CLIQUE ITERADO PROPER CIRCULAR-ARC GRAPHS HELLY CIRCULAR-ARC GRAPHS INTERVAL GRAPHS POWERS OF PATHS POWER OF CYCLES RECOGNITION ALGORITHMS TRANSFORMATION ALGORITHMS DYNAMIC RECOGNITION ALGORITHMS ISOMORPHISM PROBLEM CLIQUE GRAPHS K-BEHAVIOR |
topic |
GRAFOS ARCO-CIRCULARES PROPIOS GRAFOS ARCO-CIRCULARES HELLY GRAFOS DE INTERVALOS POTENCIAS DE CAMINOS POTENCIAS DE CICLOS ALGORITMOS DE RECONOCIMIENTO ALGORITMOS DE TRANSFORMACION ALGORITMOS DE RECONOCIMIENTO DINAMICOS PROBLEMA DE ISOMORFISMO GRAFOS CLIQUE COMPORTAMIENTO DEL OPERADOR CLIQUE ITERADO PROPER CIRCULAR-ARC GRAPHS HELLY CIRCULAR-ARC GRAPHS INTERVAL GRAPHS POWERS OF PATHS POWER OF CYCLES RECOGNITION ALGORITHMS TRANSFORMATION ALGORITHMS DYNAMIC RECOGNITION ALGORITHMS ISOMORPHISM PROBLEM CLIQUE GRAPHS K-BEHAVIOR |
dc.description.none.fl_txt_mv |
Un modelo arco-circular es un par M=(C,A) donde C es un círculo y A es una familia de arcos de C. Si ningún arco se encuentra contenido en otro arco entonces decimos que M es propio, mientras que si A satisface la propiedad de Helly entonces decimos que M es Helly. Un grafo G es arco-circular si es el grafo de intersección de los arcos de un modelo arco-circular M. Si además M es propio (resp. Helly) entonces decimos que G es un grafo arco-circular propio (resp. Helly). Los grafos arco-circulares y sus subclases son estudiados con especial atención desde fines de la década de 1960, y al día de hoy la literatura al respecto es muy vasta. Esto se debe a la gran cantidad de aplicaciones que poseen en áreas tan diversas como las bases de datos, la genética, la arqueología, la psicología, la economía, etc., y a las propiedades de su estructura combinatoria. El problema de reconocimiento de grafos arco-circulares, y de varias de sus subclases, puede ser resuelto en tiempo lineal. Más aún, un modelo arco-circular puede ser generado en tiempo lineal. En esta tesis estudiamos la clase de grafos arco-circulares desde una perspectiva estructural y algorítmica, concentrándonos principalmente en las subclases de grafos arco-circulares propios y Helly. A circular-arc model M=(C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other, then M is a proper circular-arc model, and if A satisfies the Helly Property, then M is a Helly circular-arc model. A graph G is a circular-arc graph if it is the intersection graph of the arcs of a circular-arc model M. If in addition M is a proper (resp. Helly) circular-arc model then G is a proper (resp. Helly) circular-arc graph. Circular-arc graphs and their subclasses have been the object of a great deal of attention in the literature since the late 1960's. This is because of their applications in areas as diverse as databases, genetics, archeology, psychology, economics, among others, and because of their nice combinatorial structure. Linear time recognition algorithms have been described both for the general class and for some of its subclasses. Moreover, a circular-arc model can be obtained within the same amount of time. In this thesis we study circular-arc graphs from a structural and algorithmic point of view, with our focus on the proper and Helly subclasses. Fil: Soulignac, Francisco Juan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Un modelo arco-circular es un par M=(C,A) donde C es un círculo y A es una familia de arcos de C. Si ningún arco se encuentra contenido en otro arco entonces decimos que M es propio, mientras que si A satisface la propiedad de Helly entonces decimos que M es Helly. Un grafo G es arco-circular si es el grafo de intersección de los arcos de un modelo arco-circular M. Si además M es propio (resp. Helly) entonces decimos que G es un grafo arco-circular propio (resp. Helly). Los grafos arco-circulares y sus subclases son estudiados con especial atención desde fines de la década de 1960, y al día de hoy la literatura al respecto es muy vasta. Esto se debe a la gran cantidad de aplicaciones que poseen en áreas tan diversas como las bases de datos, la genética, la arqueología, la psicología, la economía, etc., y a las propiedades de su estructura combinatoria. El problema de reconocimiento de grafos arco-circulares, y de varias de sus subclases, puede ser resuelto en tiempo lineal. Más aún, un modelo arco-circular puede ser generado en tiempo lineal. En esta tesis estudiamos la clase de grafos arco-circulares desde una perspectiva estructural y algorítmica, concentrándonos principalmente en las subclases de grafos arco-circulares propios y Helly. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/tesis_n4660_Soulignac |
url |
https://hdl.handle.net/20.500.12110/tesis_n4660_Soulignac |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
publisher.none.fl_str_mv |
Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618708479115264 |
score |
13.070432 |