Normalization of rings

Autores
Greuel, G.-M.; Laplagne, S.; Seelisch, F.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a new algorithm to compute the integral closure of a reduced Noetherian ring in its total ring of fractions. A modification, applicable in positive characteristic, where actually all computations are over the original ring, is also described. The new algorithm of this paper has been implemented in Singular, for localizations of affine rings with respect to arbitrary monomial orderings. Benchmark tests show that it is in general much faster than any other implementation of normalization algorithms known to us. © 2010 Elsevier Ltd.
Fil:Laplagne, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Symb. Comput. 2010;45(9):887-901
Materia
Grauert-Remmert criterion
Integral closure
Normalization
Test ideal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_07477171_v45_n9_p887_Greuel

id BDUBAFCEN_af571461aaca54b8f032340c213f48e4
oai_identifier_str paperaa:paper_07477171_v45_n9_p887_Greuel
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Normalization of ringsGreuel, G.-M.Laplagne, S.Seelisch, F.Grauert-Remmert criterionIntegral closureNormalizationTest idealWe present a new algorithm to compute the integral closure of a reduced Noetherian ring in its total ring of fractions. A modification, applicable in positive characteristic, where actually all computations are over the original ring, is also described. The new algorithm of this paper has been implemented in Singular, for localizations of affine rings with respect to arbitrary monomial orderings. Benchmark tests show that it is in general much faster than any other implementation of normalization algorithms known to us. © 2010 Elsevier Ltd.Fil:Laplagne, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v45_n9_p887_GreuelJ. Symb. Comput. 2010;45(9):887-901reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:58Zpaperaa:paper_07477171_v45_n9_p887_GreuelInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:59.127Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Normalization of rings
title Normalization of rings
spellingShingle Normalization of rings
Greuel, G.-M.
Grauert-Remmert criterion
Integral closure
Normalization
Test ideal
title_short Normalization of rings
title_full Normalization of rings
title_fullStr Normalization of rings
title_full_unstemmed Normalization of rings
title_sort Normalization of rings
dc.creator.none.fl_str_mv Greuel, G.-M.
Laplagne, S.
Seelisch, F.
author Greuel, G.-M.
author_facet Greuel, G.-M.
Laplagne, S.
Seelisch, F.
author_role author
author2 Laplagne, S.
Seelisch, F.
author2_role author
author
dc.subject.none.fl_str_mv Grauert-Remmert criterion
Integral closure
Normalization
Test ideal
topic Grauert-Remmert criterion
Integral closure
Normalization
Test ideal
dc.description.none.fl_txt_mv We present a new algorithm to compute the integral closure of a reduced Noetherian ring in its total ring of fractions. A modification, applicable in positive characteristic, where actually all computations are over the original ring, is also described. The new algorithm of this paper has been implemented in Singular, for localizations of affine rings with respect to arbitrary monomial orderings. Benchmark tests show that it is in general much faster than any other implementation of normalization algorithms known to us. © 2010 Elsevier Ltd.
Fil:Laplagne, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We present a new algorithm to compute the integral closure of a reduced Noetherian ring in its total ring of fractions. A modification, applicable in positive characteristic, where actually all computations are over the original ring, is also described. The new algorithm of this paper has been implemented in Singular, for localizations of affine rings with respect to arbitrary monomial orderings. Benchmark tests show that it is in general much faster than any other implementation of normalization algorithms known to us. © 2010 Elsevier Ltd.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_07477171_v45_n9_p887_Greuel
url http://hdl.handle.net/20.500.12110/paper_07477171_v45_n9_p887_Greuel
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Symb. Comput. 2010;45(9):887-901
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618736347119616
score 13.070432