A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum
- Autores
- Murgida, Gustavo Ezequiel; Castagnino, Mario Alberto G. J.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A mathematical formalism that allows to deal with many problems on quantum systems with continuous evolution spectrum is presented. The usual Hilbert space is generalized to a prehilbert one T where singular states can be represented and an extended Dirac’s notation can be introduced. The obtained formalism contains the Van Hove one but in a more natural way. It allows to explain decoherence and other phenomena.
Fil: Murgida, Gustavo Ezequiel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
Van Hove'S Formalism
Normalization
Continous Spectrum - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22001
Ver los metadatos del registro completo
id |
CONICETDig_b18f71d6c06c5840caf403cc7f255b0b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22001 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A natural normalization for the eigenstates of a Hamiltonian with continuous spectrumMurgida, Gustavo EzequielCastagnino, Mario Alberto G. J.Van Hove'S FormalismNormalizationContinous Spectrumhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A mathematical formalism that allows to deal with many problems on quantum systems with continuous evolution spectrum is presented. The usual Hilbert space is generalized to a prehilbert one T where singular states can be represented and an extended Dirac’s notation can be introduced. The obtained formalism contains the Van Hove one but in a more natural way. It allows to explain decoherence and other phenomena.Fil: Murgida, Gustavo Ezequiel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaElsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22001Murgida, Gustavo Ezequiel; Castagnino, Mario Alberto G. J.; A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 381; 12-2007; 170-1880378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2007.03.035info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437107003196info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:41Zoai:ri.conicet.gov.ar:11336/22001instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:41.521CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum |
title |
A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum |
spellingShingle |
A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum Murgida, Gustavo Ezequiel Van Hove'S Formalism Normalization Continous Spectrum |
title_short |
A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum |
title_full |
A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum |
title_fullStr |
A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum |
title_full_unstemmed |
A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum |
title_sort |
A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum |
dc.creator.none.fl_str_mv |
Murgida, Gustavo Ezequiel Castagnino, Mario Alberto G. J. |
author |
Murgida, Gustavo Ezequiel |
author_facet |
Murgida, Gustavo Ezequiel Castagnino, Mario Alberto G. J. |
author_role |
author |
author2 |
Castagnino, Mario Alberto G. J. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Van Hove'S Formalism Normalization Continous Spectrum |
topic |
Van Hove'S Formalism Normalization Continous Spectrum |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A mathematical formalism that allows to deal with many problems on quantum systems with continuous evolution spectrum is presented. The usual Hilbert space is generalized to a prehilbert one T where singular states can be represented and an extended Dirac’s notation can be introduced. The obtained formalism contains the Van Hove one but in a more natural way. It allows to explain decoherence and other phenomena. Fil: Murgida, Gustavo Ezequiel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Castagnino, Mario Alberto G. J.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
A mathematical formalism that allows to deal with many problems on quantum systems with continuous evolution spectrum is presented. The usual Hilbert space is generalized to a prehilbert one T where singular states can be represented and an extended Dirac’s notation can be introduced. The obtained formalism contains the Van Hove one but in a more natural way. It allows to explain decoherence and other phenomena. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22001 Murgida, Gustavo Ezequiel; Castagnino, Mario Alberto G. J.; A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 381; 12-2007; 170-188 0378-4371 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22001 |
identifier_str_mv |
Murgida, Gustavo Ezequiel; Castagnino, Mario Alberto G. J.; A natural normalization for the eigenstates of a Hamiltonian with continuous spectrum; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 381; 12-2007; 170-188 0378-4371 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2007.03.035 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437107003196 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614459777089536 |
score |
13.070432 |