Fractales, patrones y dimensión

Autores
Yavicoli, Alexia
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Molter, Úrsula María
Descripción
Es bien sabido que si un conjunto tiene medida Lebesgue positiva, entonces contiene una copia homotética de cualquier conjunto finito. Surge entonces la pregunta natural: ¿Cuán chico puede ser un conjunto que contenga muchas configuraciones geométricas? En esta tesis demostraré entre otros resultados, que existe un conjunto peque˜no y cerrado (definido explícitamente), sin puntos aislados, que contiene todo patrón finito definido por una familia de funciones que cumple ciertas condiciones. Entre otras aplicaciones, veremos que hay un conjunto de dimensión de Hausdorff cero que contiene todo patrón polinomial finito (en una o varias variables). También veremos que el conjunto de funciones bilipschitz satisfacen las condiciones, lo cual generaliza resultados anteriores sobre funciones lineales. Uno puede hacerse la pregunta en cierto sentido opuesta: ¿Cuán grande puede ser un conjunto que no contenga ciertos patrones? En esta tesis respondo la pregunta en el caso de patrones lineales. Veremos que dados contables patrones lineales, existe un conjunto compacto (definido explícitamente) que no contiene ninguno de esos patrones y tiene dimensión de Hausdorff total, y más aún tiene medida de Hausdorff positiva para cualquier función de dimensión prefijada. Los resultados anteriores muestran que si consideramos como noción de tama˜no a la dimensión de Hausdorff, hay conjuntos grandes sin ciertos patrones, como así también conjuntos chicos con muchos patrones. Otra noción de tama˜no importante es el espesor, definido por Newhouse. En esta tesis desarrollaré un trabajo en el que muestro que si un conjunto de Cantor tiene espesor grande entonces contiene progresiones aritméticas largas, como así también patrones más generales. Además mostraré un resultado en el que estudio el tama˜no (dimensiones L^q) de las proyecciones de una clase de medidas autosimilares aleatorias. En el momento de la publicación de este trabajo no se sabía casi nada para la dimensión L^q de medidas fractales con estructura de solapamiento.
It is well known that if a set has positive Lebesgue measure, then it contains a homothetic copy of any finite set. The natural question then arises: How small can be a set that contains many geometrical configurations? In this thesis I will prove among other results, that there exists a small and closed set (explicitly defined), without isolated points, containing all finite patterns defined by a family of functions satisfying certain conditions . Among other applications, we will see that there exists a set of Hausdorff dimension zero that contains all finite polynomial patterns (in one or more variables). We will also see that the set of bilipschitz functions satisfies the conditions, which generalizes previous results on linear functions. One can ask what is in some sense the opposite question: How large can be a set that does not contain certain patterns? In this thesis I answer the question in the case of linear patterns. We will see that given countably many linear patterns, there is a compact set (explicitly defined) that does not contain any of those patterns and has full Hausdorff dimension, and even more, has positive Hausdorff measure for any given dimension function. The previous results show that if we consider the Hausdorff dimension as a notion of size, there are large sets without certain patterns, as well as small sets with many patterns. Another important notion of size is thickness, defined by Newhouse. In this thesis I will develop a work in which I show that if a Cantor set has large thickness then it contains long arithmetic progressions, as well as more general patterns. In addition, I will develop a result in which I study the size (L^q dimensions) of the projections of a class of random self-similar measures. At the time of its publication, almost nothing was known for the L^q dimension of fractal measures with an overlapping structure.
Fil: Yavicoli, Alexia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
GEOMETRIA FRACTAL
CONJUNTOS DE CANTOR
PATRONES
DIMENSION
PROGRESIONES ARITMETICAS
ESPESOR
MEDIDAS AUTOSIMILARES
FRACTAL GEOMETRY
CANTOR SETS
PATTERNS
DIMENSION
ARITHMETIC PROGRESSION
THICKNESS
SELF-SIMILAR MEASURES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n6626_Yavicoli

id BDUBAFCEN_ac4ac04a923eeb5e8cef988a6737ac1a
oai_identifier_str tesis:tesis_n6626_Yavicoli
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Fractales, patrones y dimensiónFractals, patterns and dimensionYavicoli, AlexiaGEOMETRIA FRACTALCONJUNTOS DE CANTORPATRONESDIMENSIONPROGRESIONES ARITMETICASESPESORMEDIDAS AUTOSIMILARESFRACTAL GEOMETRYCANTOR SETSPATTERNSDIMENSIONARITHMETIC PROGRESSIONTHICKNESSSELF-SIMILAR MEASURESEs bien sabido que si un conjunto tiene medida Lebesgue positiva, entonces contiene una copia homotética de cualquier conjunto finito. Surge entonces la pregunta natural: ¿Cuán chico puede ser un conjunto que contenga muchas configuraciones geométricas? En esta tesis demostraré entre otros resultados, que existe un conjunto peque˜no y cerrado (definido explícitamente), sin puntos aislados, que contiene todo patrón finito definido por una familia de funciones que cumple ciertas condiciones. Entre otras aplicaciones, veremos que hay un conjunto de dimensión de Hausdorff cero que contiene todo patrón polinomial finito (en una o varias variables). También veremos que el conjunto de funciones bilipschitz satisfacen las condiciones, lo cual generaliza resultados anteriores sobre funciones lineales. Uno puede hacerse la pregunta en cierto sentido opuesta: ¿Cuán grande puede ser un conjunto que no contenga ciertos patrones? En esta tesis respondo la pregunta en el caso de patrones lineales. Veremos que dados contables patrones lineales, existe un conjunto compacto (definido explícitamente) que no contiene ninguno de esos patrones y tiene dimensión de Hausdorff total, y más aún tiene medida de Hausdorff positiva para cualquier función de dimensión prefijada. Los resultados anteriores muestran que si consideramos como noción de tama˜no a la dimensión de Hausdorff, hay conjuntos grandes sin ciertos patrones, como así también conjuntos chicos con muchos patrones. Otra noción de tama˜no importante es el espesor, definido por Newhouse. En esta tesis desarrollaré un trabajo en el que muestro que si un conjunto de Cantor tiene espesor grande entonces contiene progresiones aritméticas largas, como así también patrones más generales. Además mostraré un resultado en el que estudio el tama˜no (dimensiones L^q) de las proyecciones de una clase de medidas autosimilares aleatorias. En el momento de la publicación de este trabajo no se sabía casi nada para la dimensión L^q de medidas fractales con estructura de solapamiento.It is well known that if a set has positive Lebesgue measure, then it contains a homothetic copy of any finite set. The natural question then arises: How small can be a set that contains many geometrical configurations? In this thesis I will prove among other results, that there exists a small and closed set (explicitly defined), without isolated points, containing all finite patterns defined by a family of functions satisfying certain conditions . Among other applications, we will see that there exists a set of Hausdorff dimension zero that contains all finite polynomial patterns (in one or more variables). We will also see that the set of bilipschitz functions satisfies the conditions, which generalizes previous results on linear functions. One can ask what is in some sense the opposite question: How large can be a set that does not contain certain patterns? In this thesis I answer the question in the case of linear patterns. We will see that given countably many linear patterns, there is a compact set (explicitly defined) that does not contain any of those patterns and has full Hausdorff dimension, and even more, has positive Hausdorff measure for any given dimension function. The previous results show that if we consider the Hausdorff dimension as a notion of size, there are large sets without certain patterns, as well as small sets with many patterns. Another important notion of size is thickness, defined by Newhouse. In this thesis I will develop a work in which I show that if a Cantor set has large thickness then it contains long arithmetic progressions, as well as more general patterns. In addition, I will develop a result in which I study the size (L^q dimensions) of the projections of a class of random self-similar measures. At the time of its publication, almost nothing was known for the L^q dimension of fractal measures with an overlapping structure.Fil: Yavicoli, Alexia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesMolter, Úrsula María2019-03-06info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n6626_Yavicolispainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-29T13:42:18Ztesis:tesis_n6626_YavicoliInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:19.893Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Fractales, patrones y dimensión
Fractals, patterns and dimension
title Fractales, patrones y dimensión
spellingShingle Fractales, patrones y dimensión
Yavicoli, Alexia
GEOMETRIA FRACTAL
CONJUNTOS DE CANTOR
PATRONES
DIMENSION
PROGRESIONES ARITMETICAS
ESPESOR
MEDIDAS AUTOSIMILARES
FRACTAL GEOMETRY
CANTOR SETS
PATTERNS
DIMENSION
ARITHMETIC PROGRESSION
THICKNESS
SELF-SIMILAR MEASURES
title_short Fractales, patrones y dimensión
title_full Fractales, patrones y dimensión
title_fullStr Fractales, patrones y dimensión
title_full_unstemmed Fractales, patrones y dimensión
title_sort Fractales, patrones y dimensión
dc.creator.none.fl_str_mv Yavicoli, Alexia
author Yavicoli, Alexia
author_facet Yavicoli, Alexia
author_role author
dc.contributor.none.fl_str_mv Molter, Úrsula María
dc.subject.none.fl_str_mv GEOMETRIA FRACTAL
CONJUNTOS DE CANTOR
PATRONES
DIMENSION
PROGRESIONES ARITMETICAS
ESPESOR
MEDIDAS AUTOSIMILARES
FRACTAL GEOMETRY
CANTOR SETS
PATTERNS
DIMENSION
ARITHMETIC PROGRESSION
THICKNESS
SELF-SIMILAR MEASURES
topic GEOMETRIA FRACTAL
CONJUNTOS DE CANTOR
PATRONES
DIMENSION
PROGRESIONES ARITMETICAS
ESPESOR
MEDIDAS AUTOSIMILARES
FRACTAL GEOMETRY
CANTOR SETS
PATTERNS
DIMENSION
ARITHMETIC PROGRESSION
THICKNESS
SELF-SIMILAR MEASURES
dc.description.none.fl_txt_mv Es bien sabido que si un conjunto tiene medida Lebesgue positiva, entonces contiene una copia homotética de cualquier conjunto finito. Surge entonces la pregunta natural: ¿Cuán chico puede ser un conjunto que contenga muchas configuraciones geométricas? En esta tesis demostraré entre otros resultados, que existe un conjunto peque˜no y cerrado (definido explícitamente), sin puntos aislados, que contiene todo patrón finito definido por una familia de funciones que cumple ciertas condiciones. Entre otras aplicaciones, veremos que hay un conjunto de dimensión de Hausdorff cero que contiene todo patrón polinomial finito (en una o varias variables). También veremos que el conjunto de funciones bilipschitz satisfacen las condiciones, lo cual generaliza resultados anteriores sobre funciones lineales. Uno puede hacerse la pregunta en cierto sentido opuesta: ¿Cuán grande puede ser un conjunto que no contenga ciertos patrones? En esta tesis respondo la pregunta en el caso de patrones lineales. Veremos que dados contables patrones lineales, existe un conjunto compacto (definido explícitamente) que no contiene ninguno de esos patrones y tiene dimensión de Hausdorff total, y más aún tiene medida de Hausdorff positiva para cualquier función de dimensión prefijada. Los resultados anteriores muestran que si consideramos como noción de tama˜no a la dimensión de Hausdorff, hay conjuntos grandes sin ciertos patrones, como así también conjuntos chicos con muchos patrones. Otra noción de tama˜no importante es el espesor, definido por Newhouse. En esta tesis desarrollaré un trabajo en el que muestro que si un conjunto de Cantor tiene espesor grande entonces contiene progresiones aritméticas largas, como así también patrones más generales. Además mostraré un resultado en el que estudio el tama˜no (dimensiones L^q) de las proyecciones de una clase de medidas autosimilares aleatorias. En el momento de la publicación de este trabajo no se sabía casi nada para la dimensión L^q de medidas fractales con estructura de solapamiento.
It is well known that if a set has positive Lebesgue measure, then it contains a homothetic copy of any finite set. The natural question then arises: How small can be a set that contains many geometrical configurations? In this thesis I will prove among other results, that there exists a small and closed set (explicitly defined), without isolated points, containing all finite patterns defined by a family of functions satisfying certain conditions . Among other applications, we will see that there exists a set of Hausdorff dimension zero that contains all finite polynomial patterns (in one or more variables). We will also see that the set of bilipschitz functions satisfies the conditions, which generalizes previous results on linear functions. One can ask what is in some sense the opposite question: How large can be a set that does not contain certain patterns? In this thesis I answer the question in the case of linear patterns. We will see that given countably many linear patterns, there is a compact set (explicitly defined) that does not contain any of those patterns and has full Hausdorff dimension, and even more, has positive Hausdorff measure for any given dimension function. The previous results show that if we consider the Hausdorff dimension as a notion of size, there are large sets without certain patterns, as well as small sets with many patterns. Another important notion of size is thickness, defined by Newhouse. In this thesis I will develop a work in which I show that if a Cantor set has large thickness then it contains long arithmetic progressions, as well as more general patterns. In addition, I will develop a result in which I study the size (L^q dimensions) of the projections of a class of random self-similar measures. At the time of its publication, almost nothing was known for the L^q dimension of fractal measures with an overlapping structure.
Fil: Yavicoli, Alexia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Es bien sabido que si un conjunto tiene medida Lebesgue positiva, entonces contiene una copia homotética de cualquier conjunto finito. Surge entonces la pregunta natural: ¿Cuán chico puede ser un conjunto que contenga muchas configuraciones geométricas? En esta tesis demostraré entre otros resultados, que existe un conjunto peque˜no y cerrado (definido explícitamente), sin puntos aislados, que contiene todo patrón finito definido por una familia de funciones que cumple ciertas condiciones. Entre otras aplicaciones, veremos que hay un conjunto de dimensión de Hausdorff cero que contiene todo patrón polinomial finito (en una o varias variables). También veremos que el conjunto de funciones bilipschitz satisfacen las condiciones, lo cual generaliza resultados anteriores sobre funciones lineales. Uno puede hacerse la pregunta en cierto sentido opuesta: ¿Cuán grande puede ser un conjunto que no contenga ciertos patrones? En esta tesis respondo la pregunta en el caso de patrones lineales. Veremos que dados contables patrones lineales, existe un conjunto compacto (definido explícitamente) que no contiene ninguno de esos patrones y tiene dimensión de Hausdorff total, y más aún tiene medida de Hausdorff positiva para cualquier función de dimensión prefijada. Los resultados anteriores muestran que si consideramos como noción de tama˜no a la dimensión de Hausdorff, hay conjuntos grandes sin ciertos patrones, como así también conjuntos chicos con muchos patrones. Otra noción de tama˜no importante es el espesor, definido por Newhouse. En esta tesis desarrollaré un trabajo en el que muestro que si un conjunto de Cantor tiene espesor grande entonces contiene progresiones aritméticas largas, como así también patrones más generales. Además mostraré un resultado en el que estudio el tama˜no (dimensiones L^q) de las proyecciones de una clase de medidas autosimilares aleatorias. En el momento de la publicación de este trabajo no se sabía casi nada para la dimensión L^q de medidas fractales con estructura de solapamiento.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-06
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n6626_Yavicoli
url https://hdl.handle.net/20.500.12110/tesis_n6626_Yavicoli
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618722698854400
score 13.070432