Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p

Autores
Garcia, S.C.; Moretti, M.B.; Batlle, A.
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The first specific precursor of porphyrin biosynthesis is δ-aminolevulinic acid. δ-Aminolevulinic acid enters Saccharomyces cerevisiae cells through the γ-aminobutyric acid specific permease Uga4p. It was described that this permease is inducible by γ-aminobutyric acid and its regulation involves several specific and pleiotropic transcriptional factors. However, some studies showed that under certain growth conditions the synthesis of Uga4p was not dependent on the presence of γ-aminobutyric acid. To study the effect of the trans-acting factors Uga43p, Uga3p, Uga35p, Ure2p and Gln3p on the expression of UGA4, we measured γ-aminobutyric acid and δ-aminolevulinic acid uptake in yeast mutant cells, lacking one of these regulatory factors, grown under different conditions. Experiments analyzing the UGA4 promoter using a fusion construction UGA4::lacZ were also carried out. The results show that the constitutive expression of the UGA4 gene found in cells under certain growth conditions depends on the presence of Uga3p and Uga35p. In contrast, Gln3p and Ure2p do not seem to have any effect on this constitutive mechanism. Copyright (C) 2000 Federation of European Microbiological Societies.
Fil:Batlle, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
FEMS Microbiol. Lett. 2000;184(2):219-224
Materia
γ-Aminobutyric acid
δ-Aminolevulinic acid
Transcriptional factor
Transport regulation
Uga4 permease
Yeast
4 aminobutyric acid
aminolevulinic acid
permease
article
controlled study
gene expression regulation
nonhuman
priority journal
promoter region
protein transport
Saccharomyces cerevisiae
transcription regulation
Alanine
Aminolevulinic Acid
beta-Galactosidase
DNA-Binding Proteins
Fungal Proteins
GABA Plasma Membrane Transport Proteins
gamma-Aminobutyric Acid
Gene Expression Regulation, Fungal
Membrane Transport Proteins
Organic Anion Transporters
Promoter Regions (Genetics)
Recombinant Fusion Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Transcription Factors
Saccharomyces cerevisiae
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_03781097_v184_n2_p219_Garcia

id BDUBAFCEN_9bea735da72e1ecb92e80f1faed0620a
oai_identifier_str paperaa:paper_03781097_v184_n2_p219_Garcia
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35pGarcia, S.C.Moretti, M.B.Batlle, A.γ-Aminobutyric acidδ-Aminolevulinic acidTranscriptional factorTransport regulationUga4 permeaseYeast4 aminobutyric acidaminolevulinic acidpermeasearticlecontrolled studygene expression regulationnonhumanpriority journalpromoter regionprotein transportSaccharomyces cerevisiaetranscription regulationAlanineAminolevulinic Acidbeta-GalactosidaseDNA-Binding ProteinsFungal ProteinsGABA Plasma Membrane Transport Proteinsgamma-Aminobutyric AcidGene Expression Regulation, FungalMembrane Transport ProteinsOrganic Anion TransportersPromoter Regions (Genetics)Recombinant Fusion ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTranscription FactorsSaccharomyces cerevisiaeThe first specific precursor of porphyrin biosynthesis is δ-aminolevulinic acid. δ-Aminolevulinic acid enters Saccharomyces cerevisiae cells through the γ-aminobutyric acid specific permease Uga4p. It was described that this permease is inducible by γ-aminobutyric acid and its regulation involves several specific and pleiotropic transcriptional factors. However, some studies showed that under certain growth conditions the synthesis of Uga4p was not dependent on the presence of γ-aminobutyric acid. To study the effect of the trans-acting factors Uga43p, Uga3p, Uga35p, Ure2p and Gln3p on the expression of UGA4, we measured γ-aminobutyric acid and δ-aminolevulinic acid uptake in yeast mutant cells, lacking one of these regulatory factors, grown under different conditions. Experiments analyzing the UGA4 promoter using a fusion construction UGA4::lacZ were also carried out. The results show that the constitutive expression of the UGA4 gene found in cells under certain growth conditions depends on the presence of Uga3p and Uga35p. In contrast, Gln3p and Ure2p do not seem to have any effect on this constitutive mechanism. Copyright (C) 2000 Federation of European Microbiological Societies.Fil:Batlle, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2000info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03781097_v184_n2_p219_GarciaFEMS Microbiol. Lett. 2000;184(2):219-224reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:20Zpaperaa:paper_03781097_v184_n2_p219_GarciaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:22.503Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p
title Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p
spellingShingle Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p
Garcia, S.C.
γ-Aminobutyric acid
δ-Aminolevulinic acid
Transcriptional factor
Transport regulation
Uga4 permease
Yeast
4 aminobutyric acid
aminolevulinic acid
permease
article
controlled study
gene expression regulation
nonhuman
priority journal
promoter region
protein transport
Saccharomyces cerevisiae
transcription regulation
Alanine
Aminolevulinic Acid
beta-Galactosidase
DNA-Binding Proteins
Fungal Proteins
GABA Plasma Membrane Transport Proteins
gamma-Aminobutyric Acid
Gene Expression Regulation, Fungal
Membrane Transport Proteins
Organic Anion Transporters
Promoter Regions (Genetics)
Recombinant Fusion Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Transcription Factors
Saccharomyces cerevisiae
title_short Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p
title_full Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p
title_fullStr Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p
title_full_unstemmed Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p
title_sort Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p
dc.creator.none.fl_str_mv Garcia, S.C.
Moretti, M.B.
Batlle, A.
author Garcia, S.C.
author_facet Garcia, S.C.
Moretti, M.B.
Batlle, A.
author_role author
author2 Moretti, M.B.
Batlle, A.
author2_role author
author
dc.subject.none.fl_str_mv γ-Aminobutyric acid
δ-Aminolevulinic acid
Transcriptional factor
Transport regulation
Uga4 permease
Yeast
4 aminobutyric acid
aminolevulinic acid
permease
article
controlled study
gene expression regulation
nonhuman
priority journal
promoter region
protein transport
Saccharomyces cerevisiae
transcription regulation
Alanine
Aminolevulinic Acid
beta-Galactosidase
DNA-Binding Proteins
Fungal Proteins
GABA Plasma Membrane Transport Proteins
gamma-Aminobutyric Acid
Gene Expression Regulation, Fungal
Membrane Transport Proteins
Organic Anion Transporters
Promoter Regions (Genetics)
Recombinant Fusion Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Transcription Factors
Saccharomyces cerevisiae
topic γ-Aminobutyric acid
δ-Aminolevulinic acid
Transcriptional factor
Transport regulation
Uga4 permease
Yeast
4 aminobutyric acid
aminolevulinic acid
permease
article
controlled study
gene expression regulation
nonhuman
priority journal
promoter region
protein transport
Saccharomyces cerevisiae
transcription regulation
Alanine
Aminolevulinic Acid
beta-Galactosidase
DNA-Binding Proteins
Fungal Proteins
GABA Plasma Membrane Transport Proteins
gamma-Aminobutyric Acid
Gene Expression Regulation, Fungal
Membrane Transport Proteins
Organic Anion Transporters
Promoter Regions (Genetics)
Recombinant Fusion Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Transcription Factors
Saccharomyces cerevisiae
dc.description.none.fl_txt_mv The first specific precursor of porphyrin biosynthesis is δ-aminolevulinic acid. δ-Aminolevulinic acid enters Saccharomyces cerevisiae cells through the γ-aminobutyric acid specific permease Uga4p. It was described that this permease is inducible by γ-aminobutyric acid and its regulation involves several specific and pleiotropic transcriptional factors. However, some studies showed that under certain growth conditions the synthesis of Uga4p was not dependent on the presence of γ-aminobutyric acid. To study the effect of the trans-acting factors Uga43p, Uga3p, Uga35p, Ure2p and Gln3p on the expression of UGA4, we measured γ-aminobutyric acid and δ-aminolevulinic acid uptake in yeast mutant cells, lacking one of these regulatory factors, grown under different conditions. Experiments analyzing the UGA4 promoter using a fusion construction UGA4::lacZ were also carried out. The results show that the constitutive expression of the UGA4 gene found in cells under certain growth conditions depends on the presence of Uga3p and Uga35p. In contrast, Gln3p and Ure2p do not seem to have any effect on this constitutive mechanism. Copyright (C) 2000 Federation of European Microbiological Societies.
Fil:Batlle, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description The first specific precursor of porphyrin biosynthesis is δ-aminolevulinic acid. δ-Aminolevulinic acid enters Saccharomyces cerevisiae cells through the γ-aminobutyric acid specific permease Uga4p. It was described that this permease is inducible by γ-aminobutyric acid and its regulation involves several specific and pleiotropic transcriptional factors. However, some studies showed that under certain growth conditions the synthesis of Uga4p was not dependent on the presence of γ-aminobutyric acid. To study the effect of the trans-acting factors Uga43p, Uga3p, Uga35p, Ure2p and Gln3p on the expression of UGA4, we measured γ-aminobutyric acid and δ-aminolevulinic acid uptake in yeast mutant cells, lacking one of these regulatory factors, grown under different conditions. Experiments analyzing the UGA4 promoter using a fusion construction UGA4::lacZ were also carried out. The results show that the constitutive expression of the UGA4 gene found in cells under certain growth conditions depends on the presence of Uga3p and Uga35p. In contrast, Gln3p and Ure2p do not seem to have any effect on this constitutive mechanism. Copyright (C) 2000 Federation of European Microbiological Societies.
publishDate 2000
dc.date.none.fl_str_mv 2000
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_03781097_v184_n2_p219_Garcia
url http://hdl.handle.net/20.500.12110/paper_03781097_v184_n2_p219_Garcia
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv FEMS Microbiol. Lett. 2000;184(2):219-224
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142850147811328
score 12.712165