Fast non-parametric action recognition
- Autores
- Ubalde, S.; Goussies, N.A.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we propose a method for action recognition which needs no intensive learning stage, and achieves state-of-the-art classification performance. Our work is based on a method presented in the context of image classification. Unlike that method, our approach is well-suited for working with large real-world problems, thanks to an efficient organization of the training data. We show results on the KTH and IXMAS datasets. On the challenging IXMAS dataset, the average running time is reduced by 50% when using our method. © 2012 Springer-Verlag.
- Fuente
- Lect. Notes Comput. Sci. 2012;7441 LNCS:268-275
- Materia
-
action recognition
image-to-class distance
nearest neighbor
Action recognition
Average running time
Classification performance
Data sets
image-to-class distance
Nearest neighbors
Non-parametric
Real-world problem
Training data
Image analysis
Computer vision - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03029743_v7441LNCS_n_p268_Ubalde
Ver los metadatos del registro completo
id |
BDUBAFCEN_804abf14dcf512fc9f22370d68b4d37c |
---|---|
oai_identifier_str |
paperaa:paper_03029743_v7441LNCS_n_p268_Ubalde |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Fast non-parametric action recognitionUbalde, S.Goussies, N.A.action recognitionimage-to-class distancenearest neighborAction recognitionAverage running timeClassification performanceData setsimage-to-class distanceNearest neighborsNon-parametricReal-world problemTraining dataImage analysisComputer visionIn this work we propose a method for action recognition which needs no intensive learning stage, and achieves state-of-the-art classification performance. Our work is based on a method presented in the context of image classification. Unlike that method, our approach is well-suited for working with large real-world problems, thanks to an efficient organization of the training data. We show results on the KTH and IXMAS datasets. On the challenging IXMAS dataset, the average running time is reduced by 50% when using our method. © 2012 Springer-Verlag.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03029743_v7441LNCS_n_p268_UbaldeLect. Notes Comput. Sci. 2012;7441 LNCS:268-275reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:57Zpaperaa:paper_03029743_v7441LNCS_n_p268_UbaldeInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:58.736Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Fast non-parametric action recognition |
title |
Fast non-parametric action recognition |
spellingShingle |
Fast non-parametric action recognition Ubalde, S. action recognition image-to-class distance nearest neighbor Action recognition Average running time Classification performance Data sets image-to-class distance Nearest neighbors Non-parametric Real-world problem Training data Image analysis Computer vision |
title_short |
Fast non-parametric action recognition |
title_full |
Fast non-parametric action recognition |
title_fullStr |
Fast non-parametric action recognition |
title_full_unstemmed |
Fast non-parametric action recognition |
title_sort |
Fast non-parametric action recognition |
dc.creator.none.fl_str_mv |
Ubalde, S. Goussies, N.A. |
author |
Ubalde, S. |
author_facet |
Ubalde, S. Goussies, N.A. |
author_role |
author |
author2 |
Goussies, N.A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
action recognition image-to-class distance nearest neighbor Action recognition Average running time Classification performance Data sets image-to-class distance Nearest neighbors Non-parametric Real-world problem Training data Image analysis Computer vision |
topic |
action recognition image-to-class distance nearest neighbor Action recognition Average running time Classification performance Data sets image-to-class distance Nearest neighbors Non-parametric Real-world problem Training data Image analysis Computer vision |
dc.description.none.fl_txt_mv |
In this work we propose a method for action recognition which needs no intensive learning stage, and achieves state-of-the-art classification performance. Our work is based on a method presented in the context of image classification. Unlike that method, our approach is well-suited for working with large real-world problems, thanks to an efficient organization of the training data. We show results on the KTH and IXMAS datasets. On the challenging IXMAS dataset, the average running time is reduced by 50% when using our method. © 2012 Springer-Verlag. |
description |
In this work we propose a method for action recognition which needs no intensive learning stage, and achieves state-of-the-art classification performance. Our work is based on a method presented in the context of image classification. Unlike that method, our approach is well-suited for working with large real-world problems, thanks to an efficient organization of the training data. We show results on the KTH and IXMAS datasets. On the challenging IXMAS dataset, the average running time is reduced by 50% when using our method. © 2012 Springer-Verlag. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03029743_v7441LNCS_n_p268_Ubalde |
url |
http://hdl.handle.net/20.500.12110/paper_03029743_v7441LNCS_n_p268_Ubalde |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Lect. Notes Comput. Sci. 2012;7441 LNCS:268-275 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618735863726080 |
score |
13.070432 |