Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold

Autores
Lord, J.W.; Rast, M.P.; Mckinlay, C.; Clyne, J.; Mininni, P.D.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Phys. Fluids 2012;24(2)
Materia
Coherent vortices
Forcings
Gaussian random noise
Gaussians
Spatial correlations
Wavelet coefficient thresholding
Gaussian distribution
Wavelet decomposition
Data compression
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10706631_v24_n2_p_Lord

id BDUBAFCEN_5fd19aea17235d9c5e5495908e967e61
oai_identifier_str paperaa:paper_10706631_v24_n2_p_Lord
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone thresholdLord, J.W.Rast, M.P.Mckinlay, C.Clyne, J.Mininni, P.D.Coherent vorticesForcingsGaussian random noiseGaussiansSpatial correlationsWavelet coefficient thresholdingGaussian distributionWavelet decompositionData compressionWe examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics.Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_LordPhys. Fluids 2012;24(2)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:11Zpaperaa:paper_10706631_v24_n2_p_LordInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:12.294Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
spellingShingle Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
Lord, J.W.
Coherent vortices
Forcings
Gaussian random noise
Gaussians
Spatial correlations
Wavelet coefficient thresholding
Gaussian distribution
Wavelet decomposition
Data compression
title_short Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title_full Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title_fullStr Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title_full_unstemmed Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
title_sort Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold
dc.creator.none.fl_str_mv Lord, J.W.
Rast, M.P.
Mckinlay, C.
Clyne, J.
Mininni, P.D.
author Lord, J.W.
author_facet Lord, J.W.
Rast, M.P.
Mckinlay, C.
Clyne, J.
Mininni, P.D.
author_role author
author2 Rast, M.P.
Mckinlay, C.
Clyne, J.
Mininni, P.D.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Coherent vortices
Forcings
Gaussian random noise
Gaussians
Spatial correlations
Wavelet coefficient thresholding
Gaussian distribution
Wavelet decomposition
Data compression
topic Coherent vortices
Forcings
Gaussian random noise
Gaussians
Spatial correlations
Wavelet coefficient thresholding
Gaussian distribution
Wavelet decomposition
Data compression
dc.description.none.fl_txt_mv We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We examine the decomposition of forced Taylor-Green and Arn'old-Beltrami-Childress (ABC) flows into coherent and incoherent components using an orthonormal wavelet decomposition. We ask whether wavelet coefficient thresholding based on the Donoho-Johnstone criterion can extract a coherent vortex signal while leaving behind Gaussian random noise. We find that no threshold yields a strictly Gaussian incoherent component, and that the most Gaussian incoherent flow is found for data compression lower than that achieved with the fully iterated Donoho-Johnstone threshold. Moreover, even at such low compression, the incoherent component shows clear signs of large-scale spatial correlations that are signatures of the forcings used to drive the flows. © 2012 American Institute of Physics.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_Lord
url http://hdl.handle.net/20.500.12110/paper_10706631_v24_n2_p_Lord
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Phys. Fluids 2012;24(2)
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1843608734211768320
score 13.000565