Wavelet entropy of stochastic processes

Autores
Zunino, Luciano José; Pérez, Darío Gabriel; Garavaglia, Mario José; Rosso, O. A.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time–frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932–940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65–75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71–78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise (-1<α<1) and fractional Brownian motion (1<α<3) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.
Centro de Investigaciones Ópticas
Facultad de Ingeniería
Facultad de Ciencias Exactas
Materia
Física
Wavelet analysis
Wavelet entropy
Fractional
Brownian motion
Fractional Gaussian noise
α-parameter
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/131070

id SEDICI_dabdd8b4d7dffd5fd2f1c1168fcee29d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/131070
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Wavelet entropy of stochastic processesZunino, Luciano JoséPérez, Darío GabrielGaravaglia, Mario JoséRosso, O. A.FísicaWavelet analysisWavelet entropyFractionalBrownian motionFractional Gaussian noiseα-parameterWe compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time–frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932–940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65–75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71–78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise (<math><mo is="true">-</mo><mn is="true">1</mn><mo is="true"><</mo><mi is="true">α</mi><mo is="true"><</mo><mspace width="0.33em" is="true"></mspace><mn is="true">1</mn></math>) and fractional Brownian motion (<math><mn is="true">1</mn><mo is="true"><</mo><mi is="true">α</mi><mo is="true"><</mo><mspace width="0.33em" is="true"></mspace><mn is="true">3</mn></math>) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.Centro de Investigaciones ÓpticasFacultad de IngenieríaFacultad de Ciencias Exactas2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf503-512http://sedici.unlp.edu.ar/handle/10915/131070enginfo:eu-repo/semantics/altIdentifier/issn/0378-4371info:eu-repo/semantics/altIdentifier/arxiv/physics/0603144info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2006.12.057info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:03:23Zoai:sedici.unlp.edu.ar:10915/131070Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:03:23.472SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Wavelet entropy of stochastic processes
title Wavelet entropy of stochastic processes
spellingShingle Wavelet entropy of stochastic processes
Zunino, Luciano José
Física
Wavelet analysis
Wavelet entropy
Fractional
Brownian motion
Fractional Gaussian noise
α-parameter
title_short Wavelet entropy of stochastic processes
title_full Wavelet entropy of stochastic processes
title_fullStr Wavelet entropy of stochastic processes
title_full_unstemmed Wavelet entropy of stochastic processes
title_sort Wavelet entropy of stochastic processes
dc.creator.none.fl_str_mv Zunino, Luciano José
Pérez, Darío Gabriel
Garavaglia, Mario José
Rosso, O. A.
author Zunino, Luciano José
author_facet Zunino, Luciano José
Pérez, Darío Gabriel
Garavaglia, Mario José
Rosso, O. A.
author_role author
author2 Pérez, Darío Gabriel
Garavaglia, Mario José
Rosso, O. A.
author2_role author
author
author
dc.subject.none.fl_str_mv Física
Wavelet analysis
Wavelet entropy
Fractional
Brownian motion
Fractional Gaussian noise
α-parameter
topic Física
Wavelet analysis
Wavelet entropy
Fractional
Brownian motion
Fractional Gaussian noise
α-parameter
dc.description.none.fl_txt_mv We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time–frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932–940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65–75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71–78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise (<math><mo is="true">-</mo><mn is="true">1</mn><mo is="true"><</mo><mi is="true">α</mi><mo is="true"><</mo><mspace width="0.33em" is="true"></mspace><mn is="true">1</mn></math>) and fractional Brownian motion (<math><mn is="true">1</mn><mo is="true"><</mo><mi is="true">α</mi><mo is="true"><</mo><mspace width="0.33em" is="true"></mspace><mn is="true">3</mn></math>) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.
Centro de Investigaciones Ópticas
Facultad de Ingeniería
Facultad de Ciencias Exactas
description We compare two different definitions for the wavelet entropy associated to stochastic processes. The first one, the normalized total wavelet entropy (NTWS) family [S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, E. Serrano, Time–frequency analysis of electroencephalogram series, III. Wavelet packets and information cost function, Phys. Rev. E 57 (1998) 932–940; O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Method 105 (2001) 65–75] and a second introduced by Tavares and Lucena [Physica A 357(1) (2005) 71–78]. In order to understand their advantages and disadvantages, exact results obtained for fractional Gaussian noise (<math><mo is="true">-</mo><mn is="true">1</mn><mo is="true"><</mo><mi is="true">α</mi><mo is="true"><</mo><mspace width="0.33em" is="true"></mspace><mn is="true">1</mn></math>) and fractional Brownian motion (<math><mn is="true">1</mn><mo is="true"><</mo><mi is="true">α</mi><mo is="true"><</mo><mspace width="0.33em" is="true"></mspace><mn is="true">3</mn></math>) are assessed. We find out that the NTWS family performs better as a characterization method for these stochastic processes.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/131070
url http://sedici.unlp.edu.ar/handle/10915/131070
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0378-4371
info:eu-repo/semantics/altIdentifier/arxiv/physics/0603144
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2006.12.057
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
503-512
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260532296417280
score 13.13397