Enfoque por conexiones de las ecuaciones de Einstein, Yang, Mills

Autores
Taboada, Horacio Héctor
Año de publicación
1989
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Noriega, Ricardo José
Descripción
En el presente trabajo se estudian tres problemas inherentesa teorias de campo. En el primero se demuestra la unicidad del tensor demomento-energía para la teoria de Einstein-Maxwell, mediante lassiguientes hipótesis, naturales y mínimas: Toda vez que se anule la divergencia covariante del tensor decampo electromagnético, debe anularse la correspondiente al tensorde momento-energía. El tensor de momento-energía hallado coincide con el queusualmente se emplea en la teorías de Einstein-Maxwell. En el segundo trabajo, mediante un enfoque por conexionessimétricas, en el marco de la teoría de gauge de Einstein-Yang-Mills, se resuelve el problema equivariante inversodel cálculo de variaciones. Se demuestra, para un lagrangianoarbitrario L, que si las ecuaciones de campo son tensoriales einvariantes de gauge, y si el operador de Euler-Lagrange asociadoa la conexión es adecuadamente degenerado (sus componentes sólodependen de las de la métrica, de su derivada y de las de laconexión), entonces existe una densidad lagrangiana L~, invariantede gauge, equivalente a L. en el sentido que sendas expresiones de Euler-Lagrange coinciden. La verificación de las ecuaciones decampo en el vacio implica que la conexión simétrica arbitrariautilizada, coincide con la conexión de Levi-Civita. En el último se demuestra -en el mismo marco teórito y con elmismo enfoque que en el trabajo anterior- que dada una densidadescalar lagrangiana e invariante de gauge L~ (cuya existencia estáasegurada por el trabajo anterior), y con idénticas hipótesis dedegeneración, entonces L~ es única y se exhibe su forma general,para un grupo de Lie arbitrario G.
Fil: Taboada, Horacio Héctor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n2268_Taboada

id BDUBAFCEN_5572e150d417acd207a6e4b4ad54a5ab
oai_identifier_str tesis:tesis_n2268_Taboada
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Enfoque por conexiones de las ecuaciones de Einstein, Yang, MillsTaboada, Horacio HéctorEn el presente trabajo se estudian tres problemas inherentesa teorias de campo. En el primero se demuestra la unicidad del tensor demomento-energía para la teoria de Einstein-Maxwell, mediante lassiguientes hipótesis, naturales y mínimas: Toda vez que se anule la divergencia covariante del tensor decampo electromagnético, debe anularse la correspondiente al tensorde momento-energía. El tensor de momento-energía hallado coincide con el queusualmente se emplea en la teorías de Einstein-Maxwell. En el segundo trabajo, mediante un enfoque por conexionessimétricas, en el marco de la teoría de gauge de Einstein-Yang-Mills, se resuelve el problema equivariante inversodel cálculo de variaciones. Se demuestra, para un lagrangianoarbitrario L, que si las ecuaciones de campo son tensoriales einvariantes de gauge, y si el operador de Euler-Lagrange asociadoa la conexión es adecuadamente degenerado (sus componentes sólodependen de las de la métrica, de su derivada y de las de laconexión), entonces existe una densidad lagrangiana L~, invariantede gauge, equivalente a L. en el sentido que sendas expresiones de Euler-Lagrange coinciden. La verificación de las ecuaciones decampo en el vacio implica que la conexión simétrica arbitrariautilizada, coincide con la conexión de Levi-Civita. En el último se demuestra -en el mismo marco teórito y con elmismo enfoque que en el trabajo anterior- que dada una densidadescalar lagrangiana e invariante de gauge L~ (cuya existencia estáasegurada por el trabajo anterior), y con idénticas hipótesis dedegeneración, entonces L~ es única y se exhibe su forma general,para un grupo de Lie arbitrario G.Fil: Taboada, Horacio Héctor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesNoriega, Ricardo José1989info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n2268_Taboadaspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-10-23T11:16:32Ztesis:tesis_n2268_TaboadaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:16:33.168Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Enfoque por conexiones de las ecuaciones de Einstein, Yang, Mills
title Enfoque por conexiones de las ecuaciones de Einstein, Yang, Mills
spellingShingle Enfoque por conexiones de las ecuaciones de Einstein, Yang, Mills
Taboada, Horacio Héctor
title_short Enfoque por conexiones de las ecuaciones de Einstein, Yang, Mills
title_full Enfoque por conexiones de las ecuaciones de Einstein, Yang, Mills
title_fullStr Enfoque por conexiones de las ecuaciones de Einstein, Yang, Mills
title_full_unstemmed Enfoque por conexiones de las ecuaciones de Einstein, Yang, Mills
title_sort Enfoque por conexiones de las ecuaciones de Einstein, Yang, Mills
dc.creator.none.fl_str_mv Taboada, Horacio Héctor
author Taboada, Horacio Héctor
author_facet Taboada, Horacio Héctor
author_role author
dc.contributor.none.fl_str_mv Noriega, Ricardo José
dc.description.none.fl_txt_mv En el presente trabajo se estudian tres problemas inherentesa teorias de campo. En el primero se demuestra la unicidad del tensor demomento-energía para la teoria de Einstein-Maxwell, mediante lassiguientes hipótesis, naturales y mínimas: Toda vez que se anule la divergencia covariante del tensor decampo electromagnético, debe anularse la correspondiente al tensorde momento-energía. El tensor de momento-energía hallado coincide con el queusualmente se emplea en la teorías de Einstein-Maxwell. En el segundo trabajo, mediante un enfoque por conexionessimétricas, en el marco de la teoría de gauge de Einstein-Yang-Mills, se resuelve el problema equivariante inversodel cálculo de variaciones. Se demuestra, para un lagrangianoarbitrario L, que si las ecuaciones de campo son tensoriales einvariantes de gauge, y si el operador de Euler-Lagrange asociadoa la conexión es adecuadamente degenerado (sus componentes sólodependen de las de la métrica, de su derivada y de las de laconexión), entonces existe una densidad lagrangiana L~, invariantede gauge, equivalente a L. en el sentido que sendas expresiones de Euler-Lagrange coinciden. La verificación de las ecuaciones decampo en el vacio implica que la conexión simétrica arbitrariautilizada, coincide con la conexión de Levi-Civita. En el último se demuestra -en el mismo marco teórito y con elmismo enfoque que en el trabajo anterior- que dada una densidadescalar lagrangiana e invariante de gauge L~ (cuya existencia estáasegurada por el trabajo anterior), y con idénticas hipótesis dedegeneración, entonces L~ es única y se exhibe su forma general,para un grupo de Lie arbitrario G.
Fil: Taboada, Horacio Héctor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description En el presente trabajo se estudian tres problemas inherentesa teorias de campo. En el primero se demuestra la unicidad del tensor demomento-energía para la teoria de Einstein-Maxwell, mediante lassiguientes hipótesis, naturales y mínimas: Toda vez que se anule la divergencia covariante del tensor decampo electromagnético, debe anularse la correspondiente al tensorde momento-energía. El tensor de momento-energía hallado coincide con el queusualmente se emplea en la teorías de Einstein-Maxwell. En el segundo trabajo, mediante un enfoque por conexionessimétricas, en el marco de la teoría de gauge de Einstein-Yang-Mills, se resuelve el problema equivariante inversodel cálculo de variaciones. Se demuestra, para un lagrangianoarbitrario L, que si las ecuaciones de campo son tensoriales einvariantes de gauge, y si el operador de Euler-Lagrange asociadoa la conexión es adecuadamente degenerado (sus componentes sólodependen de las de la métrica, de su derivada y de las de laconexión), entonces existe una densidad lagrangiana L~, invariantede gauge, equivalente a L. en el sentido que sendas expresiones de Euler-Lagrange coinciden. La verificación de las ecuaciones decampo en el vacio implica que la conexión simétrica arbitrariautilizada, coincide con la conexión de Levi-Civita. En el último se demuestra -en el mismo marco teórito y con elmismo enfoque que en el trabajo anterior- que dada una densidadescalar lagrangiana e invariante de gauge L~ (cuya existencia estáasegurada por el trabajo anterior), y con idénticas hipótesis dedegeneración, entonces L~ es única y se exhibe su forma general,para un grupo de Lie arbitrario G.
publishDate 1989
dc.date.none.fl_str_mv 1989
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n2268_Taboada
url https://hdl.handle.net/20.500.12110/tesis_n2268_Taboada
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784843979948032
score 12.982451