SAR image segmentation using level sets and region competition under the GH model
- Autores
- Buemi, M.E.; Goussies, N.; Jacobo, J.; Mejail, M.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Synthetic Aperture Radar (SAR) images are dificult to segment due to their characteristic noise, called speckle, which is multiplicative, non-gaussian and has a low signal to noise ratio. In this work we use the GH distribution to model the SAR data from the different regions of the image. We estimate their statistical parameters and use them in a segmentation algorithm based on multiregion competition. We then apply this algorithm to segment simulated as well as real SAR images and evaluate the accuracy of the segmentation results obtained. © 2009 Springer-Verlag Berlin Heidelberg.
Fil:Buemi, M.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mejail, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Lect. Notes Comput. Sci. 2009;5856 LNCS:153-160
- Materia
-
GHdistribution
Level set
Multiregion competition
SAR images
Segmentation
GHdistribution
Level Set
Multiregion competition
SAR Images
Segmentation
Algorithms
Competition
Computer applications
Computer vision
Imaging systems
Signal to noise ratio
Synthetic aperture radar
Image segmentation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03029743_v5856LNCS_n_p153_Buemi
Ver los metadatos del registro completo
id |
BDUBAFCEN_368149953210207f98bc48d7ca42b63a |
---|---|
oai_identifier_str |
paperaa:paper_03029743_v5856LNCS_n_p153_Buemi |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
SAR image segmentation using level sets and region competition under the GH modelBuemi, M.E.Goussies, N.Jacobo, J.Mejail, M.GHdistributionLevel setMultiregion competitionSAR imagesSegmentationGHdistributionLevel SetMultiregion competitionSAR ImagesSegmentationAlgorithmsCompetitionComputer applicationsComputer visionImaging systemsSignal to noise ratioSynthetic aperture radarImage segmentationSynthetic Aperture Radar (SAR) images are dificult to segment due to their characteristic noise, called speckle, which is multiplicative, non-gaussian and has a low signal to noise ratio. In this work we use the GH distribution to model the SAR data from the different regions of the image. We estimate their statistical parameters and use them in a segmentation algorithm based on multiregion competition. We then apply this algorithm to segment simulated as well as real SAR images and evaluate the accuracy of the segmentation results obtained. © 2009 Springer-Verlag Berlin Heidelberg.Fil:Buemi, M.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mejail, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03029743_v5856LNCS_n_p153_BuemiLect. Notes Comput. Sci. 2009;5856 LNCS:153-160reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:03Zpaperaa:paper_03029743_v5856LNCS_n_p153_BuemiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:04.45Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
SAR image segmentation using level sets and region competition under the GH model |
title |
SAR image segmentation using level sets and region competition under the GH model |
spellingShingle |
SAR image segmentation using level sets and region competition under the GH model Buemi, M.E. GHdistribution Level set Multiregion competition SAR images Segmentation GHdistribution Level Set Multiregion competition SAR Images Segmentation Algorithms Competition Computer applications Computer vision Imaging systems Signal to noise ratio Synthetic aperture radar Image segmentation |
title_short |
SAR image segmentation using level sets and region competition under the GH model |
title_full |
SAR image segmentation using level sets and region competition under the GH model |
title_fullStr |
SAR image segmentation using level sets and region competition under the GH model |
title_full_unstemmed |
SAR image segmentation using level sets and region competition under the GH model |
title_sort |
SAR image segmentation using level sets and region competition under the GH model |
dc.creator.none.fl_str_mv |
Buemi, M.E. Goussies, N. Jacobo, J. Mejail, M. |
author |
Buemi, M.E. |
author_facet |
Buemi, M.E. Goussies, N. Jacobo, J. Mejail, M. |
author_role |
author |
author2 |
Goussies, N. Jacobo, J. Mejail, M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
GHdistribution Level set Multiregion competition SAR images Segmentation GHdistribution Level Set Multiregion competition SAR Images Segmentation Algorithms Competition Computer applications Computer vision Imaging systems Signal to noise ratio Synthetic aperture radar Image segmentation |
topic |
GHdistribution Level set Multiregion competition SAR images Segmentation GHdistribution Level Set Multiregion competition SAR Images Segmentation Algorithms Competition Computer applications Computer vision Imaging systems Signal to noise ratio Synthetic aperture radar Image segmentation |
dc.description.none.fl_txt_mv |
Synthetic Aperture Radar (SAR) images are dificult to segment due to their characteristic noise, called speckle, which is multiplicative, non-gaussian and has a low signal to noise ratio. In this work we use the GH distribution to model the SAR data from the different regions of the image. We estimate their statistical parameters and use them in a segmentation algorithm based on multiregion competition. We then apply this algorithm to segment simulated as well as real SAR images and evaluate the accuracy of the segmentation results obtained. © 2009 Springer-Verlag Berlin Heidelberg. Fil:Buemi, M.E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mejail, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Synthetic Aperture Radar (SAR) images are dificult to segment due to their characteristic noise, called speckle, which is multiplicative, non-gaussian and has a low signal to noise ratio. In this work we use the GH distribution to model the SAR data from the different regions of the image. We estimate their statistical parameters and use them in a segmentation algorithm based on multiregion competition. We then apply this algorithm to segment simulated as well as real SAR images and evaluate the accuracy of the segmentation results obtained. © 2009 Springer-Verlag Berlin Heidelberg. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03029743_v5856LNCS_n_p153_Buemi |
url |
http://hdl.handle.net/20.500.12110/paper_03029743_v5856LNCS_n_p153_Buemi |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Lect. Notes Comput. Sci. 2009;5856 LNCS:153-160 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618738187370496 |
score |
13.070432 |