Modelos de difusión aplicados al poblamiento de Las Americas

Autores
Martino, Luis Angel
Año de publicación
2008
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Osella, Ana María
Descripción
Se presenta un modelo de reacción-difusión que utiliza la ecuación de Fisher-Kolmogorov- Petrovsky-Piskunov aplicada a la dispersión en nuevos territorios de especies animales, resolviendo numéricamente la ecuación para sistemas complejos que poseen diferentes ambientes en los cuales la velocidad de propagación depende de cada uno de ellos. Se desarrollaron dos tipos de soluciones para la difusión aniso tropa: la primera de ellas de tipo determinista permite observar el comportamiento del frente de invasión de la población; la segunda solución es de tipo estocástica, lo cual permite realizar el seguimiento de cada uno de los individuos de la población, permitiendo colocar variables como la vida media, o la posibilidad de reproducirse. La solución estocástica obtenida se complejizó luego para tener en cuenta la variabilidad genética, estudiando en estos casos los efectos de los “cuellos de botella genéticos" en una población que realiza la invasión de un nuevo territorio. Estos modelos se aplican para simular la dispersión inicial de homínidos en Las Américas. La aplicabilidad del modelo se basa en evidencia antropológica, paleoambiental y genética, suponiendo además que la tribus cazadoras-recolectoras que ingresaron al continente posean una alta tasa de movilidad, siendo de carácter nómade. Los resultados obtenidos en las simulaciones numéricas se compararon con datos de fechados de sitios arqueológicos, excavaciones y propiedades físicas de craneos a lo largo del continente, con el objetivo de descartar o aceptar distintos escenarios para el poblamiento inicial Americano. Los resultados obtenidos permitieron acotar estos escenarios del poblamiento americano definiendo una tasa mínima de crecimiento de la población para conseguir una invasión compatible con todos los hechos arqueológicos. De acuerdo con las simulaciones realizadas concluimos, tal como predice la evidencia genética, que la dispersión de homínidos por Las Ame ricas pudo sufrir el efecto de dos cuellos de botella: uno ubicado en la zona de Panamá y otro en la isla de Tierra del Fuego, perdiendo variabilidad genética en ambos casos.
A reaction-diffusion model is presented using the Fisher-Kolmogorov-Petrovsky-Piskunov equation applied to the dispersal of animal species in new territories. The equation is numerically solved for complex systems with differing environments in which the speed wave depends on each of these. Two types of solutions for the anisotropic diffusion were developed {the former is a deterministic solution which allows observation of the behavior of the population's wave of advance; the latter is a stochastic solution, which allows follow-up of each inhabitant of the population, where variables such as life expectancy of or reproducibility can be used. The stochastic solution obtained was later made more complex in order to include genetic variability. Here the effects of genetic bottlenecks were examined in a population invading new territory. These models are applied to simulate the initial dispersal of hominids in the Americas. The model's applicability is based on anthropological, paleo-environmental and genetic evidence. Also, it is assumed that the hunting-gathering tribes entering the continent had a high mobility rate due to the fact that they were nomadic. The results from the numerical simulations were compared with data from archeological site datings, excavations and physiological properties of skulls along the American continent, with the aim to rule out or accept different scenarios for the initial settlement of the Americas. The results led us to reduce these American settlement scenarios and establish a minimal population growth rate in order to obtain an invasion which would be consistent with all the archeological facts. Based on the simulations carried out, we conclude that, as predicted by genetic evidence, hominid dispersal in the Americas could have suffered the effect of two bottlenecks one in the Panama area and the other on the Tierra del Fuego island, both of them with a loss of genetic variability.
Fil: Martino, Luis Angel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
DINAMICA DE POBLACIONES
ECUACION DE DIFUSION
SOLUCION NUMERICA
POPULATION DYNAMICS
DIFFUSION EQUATION
NUMERICAL SOLUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n4362_Martino

id BDUBAFCEN_27278a34029ca13494cb7c2e1c475585
oai_identifier_str tesis:tesis_n4362_Martino
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Modelos de difusión aplicados al poblamiento de Las AmericasDiffusion models applied to the America´s initial settlementMartino, Luis AngelDINAMICA DE POBLACIONESECUACION DE DIFUSIONSOLUCION NUMERICAPOPULATION DYNAMICSDIFFUSION EQUATIONNUMERICAL SOLUTIONSe presenta un modelo de reacción-difusión que utiliza la ecuación de Fisher-Kolmogorov- Petrovsky-Piskunov aplicada a la dispersión en nuevos territorios de especies animales, resolviendo numéricamente la ecuación para sistemas complejos que poseen diferentes ambientes en los cuales la velocidad de propagación depende de cada uno de ellos. Se desarrollaron dos tipos de soluciones para la difusión aniso tropa: la primera de ellas de tipo determinista permite observar el comportamiento del frente de invasión de la población; la segunda solución es de tipo estocástica, lo cual permite realizar el seguimiento de cada uno de los individuos de la población, permitiendo colocar variables como la vida media, o la posibilidad de reproducirse. La solución estocástica obtenida se complejizó luego para tener en cuenta la variabilidad genética, estudiando en estos casos los efectos de los “cuellos de botella genéticos" en una población que realiza la invasión de un nuevo territorio. Estos modelos se aplican para simular la dispersión inicial de homínidos en Las Américas. La aplicabilidad del modelo se basa en evidencia antropológica, paleoambiental y genética, suponiendo además que la tribus cazadoras-recolectoras que ingresaron al continente posean una alta tasa de movilidad, siendo de carácter nómade. Los resultados obtenidos en las simulaciones numéricas se compararon con datos de fechados de sitios arqueológicos, excavaciones y propiedades físicas de craneos a lo largo del continente, con el objetivo de descartar o aceptar distintos escenarios para el poblamiento inicial Americano. Los resultados obtenidos permitieron acotar estos escenarios del poblamiento americano definiendo una tasa mínima de crecimiento de la población para conseguir una invasión compatible con todos los hechos arqueológicos. De acuerdo con las simulaciones realizadas concluimos, tal como predice la evidencia genética, que la dispersión de homínidos por Las Ame ricas pudo sufrir el efecto de dos cuellos de botella: uno ubicado en la zona de Panamá y otro en la isla de Tierra del Fuego, perdiendo variabilidad genética en ambos casos.A reaction-diffusion model is presented using the Fisher-Kolmogorov-Petrovsky-Piskunov equation applied to the dispersal of animal species in new territories. The equation is numerically solved for complex systems with differing environments in which the speed wave depends on each of these. Two types of solutions for the anisotropic diffusion were developed {the former is a deterministic solution which allows observation of the behavior of the population's wave of advance; the latter is a stochastic solution, which allows follow-up of each inhabitant of the population, where variables such as life expectancy of or reproducibility can be used. The stochastic solution obtained was later made more complex in order to include genetic variability. Here the effects of genetic bottlenecks were examined in a population invading new territory. These models are applied to simulate the initial dispersal of hominids in the Americas. The model's applicability is based on anthropological, paleo-environmental and genetic evidence. Also, it is assumed that the hunting-gathering tribes entering the continent had a high mobility rate due to the fact that they were nomadic. The results from the numerical simulations were compared with data from archeological site datings, excavations and physiological properties of skulls along the American continent, with the aim to rule out or accept different scenarios for the initial settlement of the Americas. The results led us to reduce these American settlement scenarios and establish a minimal population growth rate in order to obtain an invasion which would be consistent with all the archeological facts. Based on the simulations carried out, we conclude that, as predicted by genetic evidence, hominid dispersal in the Americas could have suffered the effect of two bottlenecks one in the Panama area and the other on the Tierra del Fuego island, both of them with a loss of genetic variability.Fil: Martino, Luis Angel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesOsella, Ana María2008info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4362_Martinospainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-18T10:09:03Ztesis:tesis_n4362_MartinoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:04.043Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Modelos de difusión aplicados al poblamiento de Las Americas
Diffusion models applied to the America´s initial settlement
title Modelos de difusión aplicados al poblamiento de Las Americas
spellingShingle Modelos de difusión aplicados al poblamiento de Las Americas
Martino, Luis Angel
DINAMICA DE POBLACIONES
ECUACION DE DIFUSION
SOLUCION NUMERICA
POPULATION DYNAMICS
DIFFUSION EQUATION
NUMERICAL SOLUTION
title_short Modelos de difusión aplicados al poblamiento de Las Americas
title_full Modelos de difusión aplicados al poblamiento de Las Americas
title_fullStr Modelos de difusión aplicados al poblamiento de Las Americas
title_full_unstemmed Modelos de difusión aplicados al poblamiento de Las Americas
title_sort Modelos de difusión aplicados al poblamiento de Las Americas
dc.creator.none.fl_str_mv Martino, Luis Angel
author Martino, Luis Angel
author_facet Martino, Luis Angel
author_role author
dc.contributor.none.fl_str_mv Osella, Ana María
dc.subject.none.fl_str_mv DINAMICA DE POBLACIONES
ECUACION DE DIFUSION
SOLUCION NUMERICA
POPULATION DYNAMICS
DIFFUSION EQUATION
NUMERICAL SOLUTION
topic DINAMICA DE POBLACIONES
ECUACION DE DIFUSION
SOLUCION NUMERICA
POPULATION DYNAMICS
DIFFUSION EQUATION
NUMERICAL SOLUTION
dc.description.none.fl_txt_mv Se presenta un modelo de reacción-difusión que utiliza la ecuación de Fisher-Kolmogorov- Petrovsky-Piskunov aplicada a la dispersión en nuevos territorios de especies animales, resolviendo numéricamente la ecuación para sistemas complejos que poseen diferentes ambientes en los cuales la velocidad de propagación depende de cada uno de ellos. Se desarrollaron dos tipos de soluciones para la difusión aniso tropa: la primera de ellas de tipo determinista permite observar el comportamiento del frente de invasión de la población; la segunda solución es de tipo estocástica, lo cual permite realizar el seguimiento de cada uno de los individuos de la población, permitiendo colocar variables como la vida media, o la posibilidad de reproducirse. La solución estocástica obtenida se complejizó luego para tener en cuenta la variabilidad genética, estudiando en estos casos los efectos de los “cuellos de botella genéticos" en una población que realiza la invasión de un nuevo territorio. Estos modelos se aplican para simular la dispersión inicial de homínidos en Las Américas. La aplicabilidad del modelo se basa en evidencia antropológica, paleoambiental y genética, suponiendo además que la tribus cazadoras-recolectoras que ingresaron al continente posean una alta tasa de movilidad, siendo de carácter nómade. Los resultados obtenidos en las simulaciones numéricas se compararon con datos de fechados de sitios arqueológicos, excavaciones y propiedades físicas de craneos a lo largo del continente, con el objetivo de descartar o aceptar distintos escenarios para el poblamiento inicial Americano. Los resultados obtenidos permitieron acotar estos escenarios del poblamiento americano definiendo una tasa mínima de crecimiento de la población para conseguir una invasión compatible con todos los hechos arqueológicos. De acuerdo con las simulaciones realizadas concluimos, tal como predice la evidencia genética, que la dispersión de homínidos por Las Ame ricas pudo sufrir el efecto de dos cuellos de botella: uno ubicado en la zona de Panamá y otro en la isla de Tierra del Fuego, perdiendo variabilidad genética en ambos casos.
A reaction-diffusion model is presented using the Fisher-Kolmogorov-Petrovsky-Piskunov equation applied to the dispersal of animal species in new territories. The equation is numerically solved for complex systems with differing environments in which the speed wave depends on each of these. Two types of solutions for the anisotropic diffusion were developed {the former is a deterministic solution which allows observation of the behavior of the population's wave of advance; the latter is a stochastic solution, which allows follow-up of each inhabitant of the population, where variables such as life expectancy of or reproducibility can be used. The stochastic solution obtained was later made more complex in order to include genetic variability. Here the effects of genetic bottlenecks were examined in a population invading new territory. These models are applied to simulate the initial dispersal of hominids in the Americas. The model's applicability is based on anthropological, paleo-environmental and genetic evidence. Also, it is assumed that the hunting-gathering tribes entering the continent had a high mobility rate due to the fact that they were nomadic. The results from the numerical simulations were compared with data from archeological site datings, excavations and physiological properties of skulls along the American continent, with the aim to rule out or accept different scenarios for the initial settlement of the Americas. The results led us to reduce these American settlement scenarios and establish a minimal population growth rate in order to obtain an invasion which would be consistent with all the archeological facts. Based on the simulations carried out, we conclude that, as predicted by genetic evidence, hominid dispersal in the Americas could have suffered the effect of two bottlenecks one in the Panama area and the other on the Tierra del Fuego island, both of them with a loss of genetic variability.
Fil: Martino, Luis Angel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Se presenta un modelo de reacción-difusión que utiliza la ecuación de Fisher-Kolmogorov- Petrovsky-Piskunov aplicada a la dispersión en nuevos territorios de especies animales, resolviendo numéricamente la ecuación para sistemas complejos que poseen diferentes ambientes en los cuales la velocidad de propagación depende de cada uno de ellos. Se desarrollaron dos tipos de soluciones para la difusión aniso tropa: la primera de ellas de tipo determinista permite observar el comportamiento del frente de invasión de la población; la segunda solución es de tipo estocástica, lo cual permite realizar el seguimiento de cada uno de los individuos de la población, permitiendo colocar variables como la vida media, o la posibilidad de reproducirse. La solución estocástica obtenida se complejizó luego para tener en cuenta la variabilidad genética, estudiando en estos casos los efectos de los “cuellos de botella genéticos" en una población que realiza la invasión de un nuevo territorio. Estos modelos se aplican para simular la dispersión inicial de homínidos en Las Américas. La aplicabilidad del modelo se basa en evidencia antropológica, paleoambiental y genética, suponiendo además que la tribus cazadoras-recolectoras que ingresaron al continente posean una alta tasa de movilidad, siendo de carácter nómade. Los resultados obtenidos en las simulaciones numéricas se compararon con datos de fechados de sitios arqueológicos, excavaciones y propiedades físicas de craneos a lo largo del continente, con el objetivo de descartar o aceptar distintos escenarios para el poblamiento inicial Americano. Los resultados obtenidos permitieron acotar estos escenarios del poblamiento americano definiendo una tasa mínima de crecimiento de la población para conseguir una invasión compatible con todos los hechos arqueológicos. De acuerdo con las simulaciones realizadas concluimos, tal como predice la evidencia genética, que la dispersión de homínidos por Las Ame ricas pudo sufrir el efecto de dos cuellos de botella: uno ubicado en la zona de Panamá y otro en la isla de Tierra del Fuego, perdiendo variabilidad genética en ambos casos.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n4362_Martino
url https://hdl.handle.net/20.500.12110/tesis_n4362_Martino
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1843608732215279616
score 13.000565