Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuencia
- Autores
- Vera, Claudia María Cristina; Aragón, Ricardo
- Año de publicación
- 2004
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- La fase γ ́-Bi₂MoO₆ es un conductor iónico, cuya conductividad eléctrica, está vinculada al transporte de iones oxígeno mediado por sus sitios vacantes. Para el transporte iónico, se han propuesto ecuaciones empíricas, definiéndose la conductividad compleja como σ* = σ (ω) + jωεoε(ω). La parte real de la conductividad compleja suele expresarse de acuerdo a una ley de potencia del tipo σ (ω) = σ₀ + Aωᵼ, consistente con un valor constante a bajas frecuencias (σ₀, límite de corriente continua), mientras que a frecuencias elevadas la conductividad aumenta con la frecuencia, en respuesta a un “hopping” iónico. Se realizaron medidas de impedancia compleja en muestras sinterizadas de la fase γ ́-Bi₂MoO₆ entre 0.1 Hz- 250 kHz y 250 °C - 800 °C, con el objeto de analizar la dependencia de la conductividad eléctrica con la frecuencia. Los espectros de conductividad obtenidos permiten concluir que : - a muy bajas frecuencias (0.1 Hz a 100 Hz) la conductividad cambia con la frecuencia debido a fenómenos relacionados con polarización en los electrodos. - entre 100 Hz y aproximadamente 10 kHz la conductividad permanece constante y el rango de invariancia aumenta con la temperatura. - por encima de 10 kHz, la conductividad aumenta con una ley de potencia, consistente con saltos localizados de los iones móviles (“hopping”). La frecuencia de Nyquist de la instrumentación empleada (250 kHz) no es suficiente para caracterizar este régimen a alta temperatura
γ ́-Bi₂MoO₆ is an ionic conductor, associated with vacancy mediated oxygen transport. Ionic mobility may be characterized by analysis of the frequency dependence of conductivity and permitivity. Empirical laws have been proposed empirical laws for complex conductivity , defined by σ* = σ(ω) + jωεoε(ω), which attribute its frequency dependence to the relaxation of the ionic surroundings, in reponse to carrier displacement. The real component is often described by a power law of the type: σ(ω) = σ₀ + Aωn, consistent with a constant (σ₀ ) low frequency plateau, whereas at high frequency conductivity increases due to ionic hopping. Complex impedance measurements of sintered γ ́-Bi₂MoO₆ in the frequency range 0.1 Hz to 250 kHz, at temperatures between 250 °C and 800 °C were undertaken to characterize the frequency dependence of electrical conductivity. The conductivity spectra demonstrate that: - at very low frequency (0.1 to 100 Hz) electrode polarization phenomena are observed, resulting from ionic accumulation (“pile-up”) at the electrode. - between 100 Hz and 10 kHz, conductivity reaches a plateau and the frequency range of invariance increases with temperature. - above 10 KHz conductivity increases with frequency, with a power law dependence consistent with ionic hopping.The Nyquist frequency of the instrumentation employed (250 KHz) does nor suffice to characterize this régime at high temperatures
Fil: Vera, Claudia María Cristina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física (UBA-FI). Laboratorio de Películas Delgadas. Buenos Aires. Argentina
Fil: Aragón, Ricardo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física (UBA-FI). Laboratorio de Películas Delgadas. Buenos Aires. Argentina - Fuente
- An. (Asoc. Fís. Argent., En línea) 2004;01(16):151-153
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- afa:afa_v16_n01_p151
Ver los metadatos del registro completo
id |
BDUBAFCEN_1e2d5e6f9773052235e6e9ab832df62d |
---|---|
oai_identifier_str |
afa:afa_v16_n01_p151 |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuenciaVera, Claudia María CristinaAragón, RicardoLa fase γ ́-Bi₂MoO₆ es un conductor iónico, cuya conductividad eléctrica, está vinculada al transporte de iones oxígeno mediado por sus sitios vacantes. Para el transporte iónico, se han propuesto ecuaciones empíricas, definiéndose la conductividad compleja como σ* = σ (ω) + jωεoε(ω). La parte real de la conductividad compleja suele expresarse de acuerdo a una ley de potencia del tipo σ (ω) = σ₀ + Aωᵼ, consistente con un valor constante a bajas frecuencias (σ₀, límite de corriente continua), mientras que a frecuencias elevadas la conductividad aumenta con la frecuencia, en respuesta a un “hopping” iónico. Se realizaron medidas de impedancia compleja en muestras sinterizadas de la fase γ ́-Bi₂MoO₆ entre 0.1 Hz- 250 kHz y 250 °C - 800 °C, con el objeto de analizar la dependencia de la conductividad eléctrica con la frecuencia. Los espectros de conductividad obtenidos permiten concluir que : - a muy bajas frecuencias (0.1 Hz a 100 Hz) la conductividad cambia con la frecuencia debido a fenómenos relacionados con polarización en los electrodos. - entre 100 Hz y aproximadamente 10 kHz la conductividad permanece constante y el rango de invariancia aumenta con la temperatura. - por encima de 10 kHz, la conductividad aumenta con una ley de potencia, consistente con saltos localizados de los iones móviles (“hopping”). La frecuencia de Nyquist de la instrumentación empleada (250 kHz) no es suficiente para caracterizar este régimen a alta temperaturaγ ́-Bi₂MoO₆ is an ionic conductor, associated with vacancy mediated oxygen transport. Ionic mobility may be characterized by analysis of the frequency dependence of conductivity and permitivity. Empirical laws have been proposed empirical laws for complex conductivity , defined by σ* = σ(ω) + jωεoε(ω), which attribute its frequency dependence to the relaxation of the ionic surroundings, in reponse to carrier displacement. The real component is often described by a power law of the type: σ(ω) = σ₀ + Aωn, consistent with a constant (σ₀ ) low frequency plateau, whereas at high frequency conductivity increases due to ionic hopping. Complex impedance measurements of sintered γ ́-Bi₂MoO₆ in the frequency range 0.1 Hz to 250 kHz, at temperatures between 250 °C and 800 °C were undertaken to characterize the frequency dependence of electrical conductivity. The conductivity spectra demonstrate that: - at very low frequency (0.1 to 100 Hz) electrode polarization phenomena are observed, resulting from ionic accumulation (“pile-up”) at the electrode. - between 100 Hz and 10 kHz, conductivity reaches a plateau and the frequency range of invariance increases with temperature. - above 10 KHz conductivity increases with frequency, with a power law dependence consistent with ionic hopping.The Nyquist frequency of the instrumentation employed (250 KHz) does nor suffice to characterize this régime at high temperaturesFil: Vera, Claudia María Cristina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física (UBA-FI). Laboratorio de Películas Delgadas. Buenos Aires. ArgentinaFil: Aragón, Ricardo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física (UBA-FI). Laboratorio de Películas Delgadas. Buenos Aires. ArgentinaAsociación Física Argentina2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://hdl.handle.net/20.500.12110/afa_v16_n01_p151An. (Asoc. Fís. Argent., En línea) 2004;01(16):151-153reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar2025-09-29T13:40:29Zafa:afa_v16_n01_p151Institucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:40:30.673Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuencia |
title |
Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuencia |
spellingShingle |
Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuencia Vera, Claudia María Cristina |
title_short |
Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuencia |
title_full |
Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuencia |
title_fullStr |
Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuencia |
title_full_unstemmed |
Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuencia |
title_sort |
Dependencia de la conductividad eléctrica de la fase γ ́-Bi₂MoO₆ con la frecuencia |
dc.creator.none.fl_str_mv |
Vera, Claudia María Cristina Aragón, Ricardo |
author |
Vera, Claudia María Cristina |
author_facet |
Vera, Claudia María Cristina Aragón, Ricardo |
author_role |
author |
author2 |
Aragón, Ricardo |
author2_role |
author |
dc.description.none.fl_txt_mv |
La fase γ ́-Bi₂MoO₆ es un conductor iónico, cuya conductividad eléctrica, está vinculada al transporte de iones oxígeno mediado por sus sitios vacantes. Para el transporte iónico, se han propuesto ecuaciones empíricas, definiéndose la conductividad compleja como σ* = σ (ω) + jωεoε(ω). La parte real de la conductividad compleja suele expresarse de acuerdo a una ley de potencia del tipo σ (ω) = σ₀ + Aωᵼ, consistente con un valor constante a bajas frecuencias (σ₀, límite de corriente continua), mientras que a frecuencias elevadas la conductividad aumenta con la frecuencia, en respuesta a un “hopping” iónico. Se realizaron medidas de impedancia compleja en muestras sinterizadas de la fase γ ́-Bi₂MoO₆ entre 0.1 Hz- 250 kHz y 250 °C - 800 °C, con el objeto de analizar la dependencia de la conductividad eléctrica con la frecuencia. Los espectros de conductividad obtenidos permiten concluir que : - a muy bajas frecuencias (0.1 Hz a 100 Hz) la conductividad cambia con la frecuencia debido a fenómenos relacionados con polarización en los electrodos. - entre 100 Hz y aproximadamente 10 kHz la conductividad permanece constante y el rango de invariancia aumenta con la temperatura. - por encima de 10 kHz, la conductividad aumenta con una ley de potencia, consistente con saltos localizados de los iones móviles (“hopping”). La frecuencia de Nyquist de la instrumentación empleada (250 kHz) no es suficiente para caracterizar este régimen a alta temperatura γ ́-Bi₂MoO₆ is an ionic conductor, associated with vacancy mediated oxygen transport. Ionic mobility may be characterized by analysis of the frequency dependence of conductivity and permitivity. Empirical laws have been proposed empirical laws for complex conductivity , defined by σ* = σ(ω) + jωεoε(ω), which attribute its frequency dependence to the relaxation of the ionic surroundings, in reponse to carrier displacement. The real component is often described by a power law of the type: σ(ω) = σ₀ + Aωn, consistent with a constant (σ₀ ) low frequency plateau, whereas at high frequency conductivity increases due to ionic hopping. Complex impedance measurements of sintered γ ́-Bi₂MoO₆ in the frequency range 0.1 Hz to 250 kHz, at temperatures between 250 °C and 800 °C were undertaken to characterize the frequency dependence of electrical conductivity. The conductivity spectra demonstrate that: - at very low frequency (0.1 to 100 Hz) electrode polarization phenomena are observed, resulting from ionic accumulation (“pile-up”) at the electrode. - between 100 Hz and 10 kHz, conductivity reaches a plateau and the frequency range of invariance increases with temperature. - above 10 KHz conductivity increases with frequency, with a power law dependence consistent with ionic hopping.The Nyquist frequency of the instrumentation employed (250 KHz) does nor suffice to characterize this régime at high temperatures Fil: Vera, Claudia María Cristina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física (UBA-FI). Laboratorio de Películas Delgadas. Buenos Aires. Argentina Fil: Aragón, Ricardo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física (UBA-FI). Laboratorio de Películas Delgadas. Buenos Aires. Argentina |
description |
La fase γ ́-Bi₂MoO₆ es un conductor iónico, cuya conductividad eléctrica, está vinculada al transporte de iones oxígeno mediado por sus sitios vacantes. Para el transporte iónico, se han propuesto ecuaciones empíricas, definiéndose la conductividad compleja como σ* = σ (ω) + jωεoε(ω). La parte real de la conductividad compleja suele expresarse de acuerdo a una ley de potencia del tipo σ (ω) = σ₀ + Aωᵼ, consistente con un valor constante a bajas frecuencias (σ₀, límite de corriente continua), mientras que a frecuencias elevadas la conductividad aumenta con la frecuencia, en respuesta a un “hopping” iónico. Se realizaron medidas de impedancia compleja en muestras sinterizadas de la fase γ ́-Bi₂MoO₆ entre 0.1 Hz- 250 kHz y 250 °C - 800 °C, con el objeto de analizar la dependencia de la conductividad eléctrica con la frecuencia. Los espectros de conductividad obtenidos permiten concluir que : - a muy bajas frecuencias (0.1 Hz a 100 Hz) la conductividad cambia con la frecuencia debido a fenómenos relacionados con polarización en los electrodos. - entre 100 Hz y aproximadamente 10 kHz la conductividad permanece constante y el rango de invariancia aumenta con la temperatura. - por encima de 10 kHz, la conductividad aumenta con una ley de potencia, consistente con saltos localizados de los iones móviles (“hopping”). La frecuencia de Nyquist de la instrumentación empleada (250 kHz) no es suficiente para caracterizar este régimen a alta temperatura |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://hdl.handle.net/20.500.12110/afa_v16_n01_p151 |
url |
https://hdl.handle.net/20.500.12110/afa_v16_n01_p151 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Física Argentina |
publisher.none.fl_str_mv |
Asociación Física Argentina |
dc.source.none.fl_str_mv |
An. (Asoc. Fís. Argent., En línea) 2004;01(16):151-153 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618686959190016 |
score |
13.070432 |