The decay of turbulence in rotating flows
- Autores
- Teitelbaum, T.; Mininni, P.D.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a parametric space study of the decay of turbulence in rotating flows combining direct numerical simulations, large eddy simulations, and phenomenological theory. Several cases are considered: (1) the effect of varying the characteristic scale of the initial conditions when compared with the size of the box, to mimic "bounded" and "unbounded" flows; (2) the effect of helicity (correlation between the velocity and vorticity); (3) the effect of Rossby and Reynolds numbers; and (4) the effect of anisotropy in the initial conditions. Initial conditions include the Taylor-Green vortex, the Arn'old-Beltrami-Childress flow, and random flows with large-scale energy spectrum proportional to k4. The decay laws obtained in the simulations for the energy, helicity, and enstrophy in each case can be explained with phenomenological arguments that consider separate decays for two-dimensional and three-dimensional modes and that take into account the role of helicity and rotation in slowing down the energy decay. The time evolution of the energy spectrum and development of anisotropies in the simulations are also discussed. Finally, the effect of rotation and helicity in the skewness and kurtosis of the flow is considered. © 2011 American Institute of Physics.
Fil:Teitelbaum, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Phys. Fluids 2011;23(6)
- Materia
-
Decay law
Energy decay
Energy spectra
Enstrophy
Helicities
Initial conditions
Large-scale energy spectrum
Parametric spaces
Phenomenological theory
Random flows
Rotating flow
Taylor-Green vortex
Time evolutions
Anisotropy
Reynolds number
Rotation
Rotational flow
Spectroscopy
Statistical methods
Turbulence
Vortex flow
Decay (organic) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_10706631_v23_n6_p_Teitelbaum
Ver los metadatos del registro completo
id |
BDUBAFCEN_191c2e148464f1208c1d503d709eb19d |
---|---|
oai_identifier_str |
paperaa:paper_10706631_v23_n6_p_Teitelbaum |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
The decay of turbulence in rotating flowsTeitelbaum, T.Mininni, P.D.Decay lawEnergy decayEnergy spectraEnstrophyHelicitiesInitial conditionsLarge-scale energy spectrumParametric spacesPhenomenological theoryRandom flowsRotating flowTaylor-Green vortexTime evolutionsAnisotropyReynolds numberRotationRotational flowSpectroscopyStatistical methodsTurbulenceVortex flowDecay (organic)We present a parametric space study of the decay of turbulence in rotating flows combining direct numerical simulations, large eddy simulations, and phenomenological theory. Several cases are considered: (1) the effect of varying the characteristic scale of the initial conditions when compared with the size of the box, to mimic "bounded" and "unbounded" flows; (2) the effect of helicity (correlation between the velocity and vorticity); (3) the effect of Rossby and Reynolds numbers; and (4) the effect of anisotropy in the initial conditions. Initial conditions include the Taylor-Green vortex, the Arn'old-Beltrami-Childress flow, and random flows with large-scale energy spectrum proportional to k4. The decay laws obtained in the simulations for the energy, helicity, and enstrophy in each case can be explained with phenomenological arguments that consider separate decays for two-dimensional and three-dimensional modes and that take into account the role of helicity and rotation in slowing down the energy decay. The time evolution of the energy spectrum and development of anisotropies in the simulations are also discussed. Finally, the effect of rotation and helicity in the skewness and kurtosis of the flow is considered. © 2011 American Institute of Physics.Fil:Teitelbaum, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10706631_v23_n6_p_TeitelbaumPhys. Fluids 2011;23(6)reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:58Zpaperaa:paper_10706631_v23_n6_p_TeitelbaumInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:59.273Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
The decay of turbulence in rotating flows |
title |
The decay of turbulence in rotating flows |
spellingShingle |
The decay of turbulence in rotating flows Teitelbaum, T. Decay law Energy decay Energy spectra Enstrophy Helicities Initial conditions Large-scale energy spectrum Parametric spaces Phenomenological theory Random flows Rotating flow Taylor-Green vortex Time evolutions Anisotropy Reynolds number Rotation Rotational flow Spectroscopy Statistical methods Turbulence Vortex flow Decay (organic) |
title_short |
The decay of turbulence in rotating flows |
title_full |
The decay of turbulence in rotating flows |
title_fullStr |
The decay of turbulence in rotating flows |
title_full_unstemmed |
The decay of turbulence in rotating flows |
title_sort |
The decay of turbulence in rotating flows |
dc.creator.none.fl_str_mv |
Teitelbaum, T. Mininni, P.D. |
author |
Teitelbaum, T. |
author_facet |
Teitelbaum, T. Mininni, P.D. |
author_role |
author |
author2 |
Mininni, P.D. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Decay law Energy decay Energy spectra Enstrophy Helicities Initial conditions Large-scale energy spectrum Parametric spaces Phenomenological theory Random flows Rotating flow Taylor-Green vortex Time evolutions Anisotropy Reynolds number Rotation Rotational flow Spectroscopy Statistical methods Turbulence Vortex flow Decay (organic) |
topic |
Decay law Energy decay Energy spectra Enstrophy Helicities Initial conditions Large-scale energy spectrum Parametric spaces Phenomenological theory Random flows Rotating flow Taylor-Green vortex Time evolutions Anisotropy Reynolds number Rotation Rotational flow Spectroscopy Statistical methods Turbulence Vortex flow Decay (organic) |
dc.description.none.fl_txt_mv |
We present a parametric space study of the decay of turbulence in rotating flows combining direct numerical simulations, large eddy simulations, and phenomenological theory. Several cases are considered: (1) the effect of varying the characteristic scale of the initial conditions when compared with the size of the box, to mimic "bounded" and "unbounded" flows; (2) the effect of helicity (correlation between the velocity and vorticity); (3) the effect of Rossby and Reynolds numbers; and (4) the effect of anisotropy in the initial conditions. Initial conditions include the Taylor-Green vortex, the Arn'old-Beltrami-Childress flow, and random flows with large-scale energy spectrum proportional to k4. The decay laws obtained in the simulations for the energy, helicity, and enstrophy in each case can be explained with phenomenological arguments that consider separate decays for two-dimensional and three-dimensional modes and that take into account the role of helicity and rotation in slowing down the energy decay. The time evolution of the energy spectrum and development of anisotropies in the simulations are also discussed. Finally, the effect of rotation and helicity in the skewness and kurtosis of the flow is considered. © 2011 American Institute of Physics. Fil:Teitelbaum, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We present a parametric space study of the decay of turbulence in rotating flows combining direct numerical simulations, large eddy simulations, and phenomenological theory. Several cases are considered: (1) the effect of varying the characteristic scale of the initial conditions when compared with the size of the box, to mimic "bounded" and "unbounded" flows; (2) the effect of helicity (correlation between the velocity and vorticity); (3) the effect of Rossby and Reynolds numbers; and (4) the effect of anisotropy in the initial conditions. Initial conditions include the Taylor-Green vortex, the Arn'old-Beltrami-Childress flow, and random flows with large-scale energy spectrum proportional to k4. The decay laws obtained in the simulations for the energy, helicity, and enstrophy in each case can be explained with phenomenological arguments that consider separate decays for two-dimensional and three-dimensional modes and that take into account the role of helicity and rotation in slowing down the energy decay. The time evolution of the energy spectrum and development of anisotropies in the simulations are also discussed. Finally, the effect of rotation and helicity in the skewness and kurtosis of the flow is considered. © 2011 American Institute of Physics. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_10706631_v23_n6_p_Teitelbaum |
url |
http://hdl.handle.net/20.500.12110/paper_10706631_v23_n6_p_Teitelbaum |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Phys. Fluids 2011;23(6) reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618736420519936 |
score |
13.070432 |