Large-scale effects on the decay of rotating helical and non-helical turbulence
- Autores
- Teitelbaum, Tomas; Mininni, Pablo Daniel
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Turbulent mixing in geophysics is often affected by the presence of rotation, which renders the flow anisotropic at large scales. Helicity (correlation between the velocity and its curl) has relevance for atmospheric and astrophysical flows and can also affect mixing. In this paper, decaying three-dimensional (3D) turbulence is studied via direct numerical simulations (DNS) for an isotropic non-rotating flow and for rotating flows with and without helicity. We analyze the cases of moderate Rossby number and large Reynolds number, focusing on the behavior of the energy spectrum at large scales and studying its effect on the time evolution of the energy and integral scales for E(k)∼k4 initial conditions. In the non-rotating case, we observe the classical energy decay rate t-10/7 and a growth of the integral length proportional to t2/7 in agreement with the prediction obtained assuming conservation of the Loitsyanski integral. In the presence of rotation we observe a decoupling in the decay of the modes perpendicular to the rotation axis from the remaining 3D modes. These slow modes show a behavior similar to that found in two-dimensional (2D) turbulence, whereas the 3D modes decay as in the isotropic case. We phenomenologically explain the decay considering integral conserved quantities that depend on the large-scale anisotropic spectrum. The decoupling of modes is also observed for a flow with a net amount of helicity. In this case, the 3D modes decay as an isotropic fluid with a constant, constrained integral length and the 2D modes decay as a constrained rotating fluid with maximum helicity. © 2010 The Royal Swedish Academy of Sciences.
Fil: Teitelbaum, Tomas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. National Center for Atmospheric Research; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Turbulence
Helicity
Decay
Large Scale - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/57853
Ver los metadatos del registro completo
id |
CONICETDig_2b560126be5d7be7738e5372964443c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/57853 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Large-scale effects on the decay of rotating helical and non-helical turbulenceTeitelbaum, TomasMininni, Pablo DanielTurbulenceHelicityDecayLarge Scalehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Turbulent mixing in geophysics is often affected by the presence of rotation, which renders the flow anisotropic at large scales. Helicity (correlation between the velocity and its curl) has relevance for atmospheric and astrophysical flows and can also affect mixing. In this paper, decaying three-dimensional (3D) turbulence is studied via direct numerical simulations (DNS) for an isotropic non-rotating flow and for rotating flows with and without helicity. We analyze the cases of moderate Rossby number and large Reynolds number, focusing on the behavior of the energy spectrum at large scales and studying its effect on the time evolution of the energy and integral scales for E(k)∼k4 initial conditions. In the non-rotating case, we observe the classical energy decay rate t-10/7 and a growth of the integral length proportional to t2/7 in agreement with the prediction obtained assuming conservation of the Loitsyanski integral. In the presence of rotation we observe a decoupling in the decay of the modes perpendicular to the rotation axis from the remaining 3D modes. These slow modes show a behavior similar to that found in two-dimensional (2D) turbulence, whereas the 3D modes decay as in the isotropic case. We phenomenologically explain the decay considering integral conserved quantities that depend on the large-scale anisotropic spectrum. The decoupling of modes is also observed for a flow with a net amount of helicity. In this case, the 3D modes decay as an isotropic fluid with a constant, constrained integral length and the 2D modes decay as a constrained rotating fluid with maximum helicity. © 2010 The Royal Swedish Academy of Sciences.Fil: Teitelbaum, Tomas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. National Center for Atmospheric Research; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaIOP Publishing2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57853Teitelbaum, Tomas; Mininni, Pablo Daniel; Large-scale effects on the decay of rotating helical and non-helical turbulence; IOP Publishing; Physica Scripta; T142; 12-2010; 140031-1400390281-1847CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1402-4896/2010/T142/014003info:eu-repo/semantics/altIdentifier/doi/10.1088/0031-8949/2010/T142/014003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:11Zoai:ri.conicet.gov.ar:11336/57853instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:11.902CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Large-scale effects on the decay of rotating helical and non-helical turbulence |
title |
Large-scale effects on the decay of rotating helical and non-helical turbulence |
spellingShingle |
Large-scale effects on the decay of rotating helical and non-helical turbulence Teitelbaum, Tomas Turbulence Helicity Decay Large Scale |
title_short |
Large-scale effects on the decay of rotating helical and non-helical turbulence |
title_full |
Large-scale effects on the decay of rotating helical and non-helical turbulence |
title_fullStr |
Large-scale effects on the decay of rotating helical and non-helical turbulence |
title_full_unstemmed |
Large-scale effects on the decay of rotating helical and non-helical turbulence |
title_sort |
Large-scale effects on the decay of rotating helical and non-helical turbulence |
dc.creator.none.fl_str_mv |
Teitelbaum, Tomas Mininni, Pablo Daniel |
author |
Teitelbaum, Tomas |
author_facet |
Teitelbaum, Tomas Mininni, Pablo Daniel |
author_role |
author |
author2 |
Mininni, Pablo Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Turbulence Helicity Decay Large Scale |
topic |
Turbulence Helicity Decay Large Scale |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Turbulent mixing in geophysics is often affected by the presence of rotation, which renders the flow anisotropic at large scales. Helicity (correlation between the velocity and its curl) has relevance for atmospheric and astrophysical flows and can also affect mixing. In this paper, decaying three-dimensional (3D) turbulence is studied via direct numerical simulations (DNS) for an isotropic non-rotating flow and for rotating flows with and without helicity. We analyze the cases of moderate Rossby number and large Reynolds number, focusing on the behavior of the energy spectrum at large scales and studying its effect on the time evolution of the energy and integral scales for E(k)∼k4 initial conditions. In the non-rotating case, we observe the classical energy decay rate t-10/7 and a growth of the integral length proportional to t2/7 in agreement with the prediction obtained assuming conservation of the Loitsyanski integral. In the presence of rotation we observe a decoupling in the decay of the modes perpendicular to the rotation axis from the remaining 3D modes. These slow modes show a behavior similar to that found in two-dimensional (2D) turbulence, whereas the 3D modes decay as in the isotropic case. We phenomenologically explain the decay considering integral conserved quantities that depend on the large-scale anisotropic spectrum. The decoupling of modes is also observed for a flow with a net amount of helicity. In this case, the 3D modes decay as an isotropic fluid with a constant, constrained integral length and the 2D modes decay as a constrained rotating fluid with maximum helicity. © 2010 The Royal Swedish Academy of Sciences. Fil: Teitelbaum, Tomas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Mininni, Pablo Daniel. National Center for Atmospheric Research; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
Turbulent mixing in geophysics is often affected by the presence of rotation, which renders the flow anisotropic at large scales. Helicity (correlation between the velocity and its curl) has relevance for atmospheric and astrophysical flows and can also affect mixing. In this paper, decaying three-dimensional (3D) turbulence is studied via direct numerical simulations (DNS) for an isotropic non-rotating flow and for rotating flows with and without helicity. We analyze the cases of moderate Rossby number and large Reynolds number, focusing on the behavior of the energy spectrum at large scales and studying its effect on the time evolution of the energy and integral scales for E(k)∼k4 initial conditions. In the non-rotating case, we observe the classical energy decay rate t-10/7 and a growth of the integral length proportional to t2/7 in agreement with the prediction obtained assuming conservation of the Loitsyanski integral. In the presence of rotation we observe a decoupling in the decay of the modes perpendicular to the rotation axis from the remaining 3D modes. These slow modes show a behavior similar to that found in two-dimensional (2D) turbulence, whereas the 3D modes decay as in the isotropic case. We phenomenologically explain the decay considering integral conserved quantities that depend on the large-scale anisotropic spectrum. The decoupling of modes is also observed for a flow with a net amount of helicity. In this case, the 3D modes decay as an isotropic fluid with a constant, constrained integral length and the 2D modes decay as a constrained rotating fluid with maximum helicity. © 2010 The Royal Swedish Academy of Sciences. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/57853 Teitelbaum, Tomas; Mininni, Pablo Daniel; Large-scale effects on the decay of rotating helical and non-helical turbulence; IOP Publishing; Physica Scripta; T142; 12-2010; 140031-140039 0281-1847 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/57853 |
identifier_str_mv |
Teitelbaum, Tomas; Mininni, Pablo Daniel; Large-scale effects on the decay of rotating helical and non-helical turbulence; IOP Publishing; Physica Scripta; T142; 12-2010; 140031-140039 0281-1847 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1402-4896/2010/T142/014003 info:eu-repo/semantics/altIdentifier/doi/10.1088/0031-8949/2010/T142/014003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270072806047744 |
score |
13.13397 |