Decay of Batchelor and Saffman rotating turbulence

Autores
Teitelbaum, Tomas; Mininni, Pablo Daniel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The decay rate of isotropic and homogeneous turbulence is known to be affected by the large-scale spectrum of the initial perturbations, associated with at least two canonical self-preserving solutions of the von Kármán-Howarth equation: the so-called Batchelor and Saffman spectra. The effect of long-range correlations in the decay of anisotropic flows is less clear, and recently it has been proposed that the decay rate of rotating turbulence may be independent of the large-scale spectrum of the initial perturbations. We analyze numerical simulations of freely decaying rotating turbulence with initial energy spectra ∼k4 (Batchelor turbulence) and ∼k2 (Saffman turbulence) and show that, while a self-similar decay can not be identified for the total energy, the decay is indeed affected by long-range correlations. The decay of two- and three-dimensional modes follows distinct power laws in each case, which are consistent with predictions derived from the anisotropic von Kármán-Howarth equation, and with conservation of anisotropic integral quantities by the flow evolution. © 2012 American Physical Society.
Fil: Teitelbaum, Tomas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. National Center for Atmospheric Research; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Rotating Flows
Batchelor Spectrum
Energy Decay
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55965

id CONICETDig_a45d69d000619976eb9e225737c7bd60
oai_identifier_str oai:ri.conicet.gov.ar:11336/55965
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Decay of Batchelor and Saffman rotating turbulenceTeitelbaum, TomasMininni, Pablo DanielRotating FlowsBatchelor SpectrumEnergy Decayhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The decay rate of isotropic and homogeneous turbulence is known to be affected by the large-scale spectrum of the initial perturbations, associated with at least two canonical self-preserving solutions of the von Kármán-Howarth equation: the so-called Batchelor and Saffman spectra. The effect of long-range correlations in the decay of anisotropic flows is less clear, and recently it has been proposed that the decay rate of rotating turbulence may be independent of the large-scale spectrum of the initial perturbations. We analyze numerical simulations of freely decaying rotating turbulence with initial energy spectra ∼k4 (Batchelor turbulence) and ∼k2 (Saffman turbulence) and show that, while a self-similar decay can not be identified for the total energy, the decay is indeed affected by long-range correlations. The decay of two- and three-dimensional modes follows distinct power laws in each case, which are consistent with predictions derived from the anisotropic von Kármán-Howarth equation, and with conservation of anisotropic integral quantities by the flow evolution. © 2012 American Physical Society.Fil: Teitelbaum, Tomas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. National Center for Atmospheric Research; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55965Teitelbaum, Tomas; Mininni, Pablo Daniel; Decay of Batchelor and Saffman rotating turbulence; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 86; 6; 12-2012; 6632001-66320131539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pre.aps.org/abstract/PRE/v86/i6/e066320info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.86.066320info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:45Zoai:ri.conicet.gov.ar:11336/55965instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:45.394CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Decay of Batchelor and Saffman rotating turbulence
title Decay of Batchelor and Saffman rotating turbulence
spellingShingle Decay of Batchelor and Saffman rotating turbulence
Teitelbaum, Tomas
Rotating Flows
Batchelor Spectrum
Energy Decay
title_short Decay of Batchelor and Saffman rotating turbulence
title_full Decay of Batchelor and Saffman rotating turbulence
title_fullStr Decay of Batchelor and Saffman rotating turbulence
title_full_unstemmed Decay of Batchelor and Saffman rotating turbulence
title_sort Decay of Batchelor and Saffman rotating turbulence
dc.creator.none.fl_str_mv Teitelbaum, Tomas
Mininni, Pablo Daniel
author Teitelbaum, Tomas
author_facet Teitelbaum, Tomas
Mininni, Pablo Daniel
author_role author
author2 Mininni, Pablo Daniel
author2_role author
dc.subject.none.fl_str_mv Rotating Flows
Batchelor Spectrum
Energy Decay
topic Rotating Flows
Batchelor Spectrum
Energy Decay
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The decay rate of isotropic and homogeneous turbulence is known to be affected by the large-scale spectrum of the initial perturbations, associated with at least two canonical self-preserving solutions of the von Kármán-Howarth equation: the so-called Batchelor and Saffman spectra. The effect of long-range correlations in the decay of anisotropic flows is less clear, and recently it has been proposed that the decay rate of rotating turbulence may be independent of the large-scale spectrum of the initial perturbations. We analyze numerical simulations of freely decaying rotating turbulence with initial energy spectra ∼k4 (Batchelor turbulence) and ∼k2 (Saffman turbulence) and show that, while a self-similar decay can not be identified for the total energy, the decay is indeed affected by long-range correlations. The decay of two- and three-dimensional modes follows distinct power laws in each case, which are consistent with predictions derived from the anisotropic von Kármán-Howarth equation, and with conservation of anisotropic integral quantities by the flow evolution. © 2012 American Physical Society.
Fil: Teitelbaum, Tomas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. National Center for Atmospheric Research; Estados Unidos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description The decay rate of isotropic and homogeneous turbulence is known to be affected by the large-scale spectrum of the initial perturbations, associated with at least two canonical self-preserving solutions of the von Kármán-Howarth equation: the so-called Batchelor and Saffman spectra. The effect of long-range correlations in the decay of anisotropic flows is less clear, and recently it has been proposed that the decay rate of rotating turbulence may be independent of the large-scale spectrum of the initial perturbations. We analyze numerical simulations of freely decaying rotating turbulence with initial energy spectra ∼k4 (Batchelor turbulence) and ∼k2 (Saffman turbulence) and show that, while a self-similar decay can not be identified for the total energy, the decay is indeed affected by long-range correlations. The decay of two- and three-dimensional modes follows distinct power laws in each case, which are consistent with predictions derived from the anisotropic von Kármán-Howarth equation, and with conservation of anisotropic integral quantities by the flow evolution. © 2012 American Physical Society.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55965
Teitelbaum, Tomas; Mininni, Pablo Daniel; Decay of Batchelor and Saffman rotating turbulence; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 86; 6; 12-2012; 6632001-6632013
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55965
identifier_str_mv Teitelbaum, Tomas; Mininni, Pablo Daniel; Decay of Batchelor and Saffman rotating turbulence; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 86; 6; 12-2012; 6632001-6632013
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pre.aps.org/abstract/PRE/v86/i6/e066320
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.86.066320
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614153176612864
score 13.070432