Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanos

Autores
Kordon, Francisco
Año de publicación
2019
Idioma
inglés
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Suárez-Álvarez, Mariano
Descripción
Dado un arreglo de hiperplanos A en un espacio vectorial V sobre un cuerpo de característica cero, estudiamos el álgebra Diff(A) de operadores diferenciales enV tangentes a los hiperplanos de A desde el punto de vista del álgebra homológica. Hacemos un estudio detallado de este álgebra para el caso de un arreglo central de rectas en un espacio vectorial de dimensión 2. Entre otras cosas, determinamos la cohomología de Hochschild HH(Diff(A)) como álgebra de Gerstenhaber, establecemos un vínculo entre ésta y la cohomología de de Rham del complemento M(A) del arreglo, determinamos el grupo de isomorfismos de Diff(A), clasificamos las álgebras de esta forma a menos de isomorfismo y estudiamos las deformaciones formales de Diff(A). Mostramos que en el contexto general de un arreglo de hiperplanos de dimensión arbitraria el álgebra Diff(A) es isomorfa al álgebra envolvente del par de Lie–Rinehart formado por el álgebra de funciones coordenadas del espacio vectorial y el álgebra de Lie de derivaciones tangentes al arreglo. El cálculo de la cohomología de Hochschild de Diff(A) puede ser ubicado entonces en el contexto del cálculo de la del álgebra envolvente U de un par de Lie–Rinehart (S; L): damos un método para hacer esto en el caso en que L es un S-módulo proyectivo. Concretamente, presentamos una sucesión espectral que converge a HH(U ) cuya segunda página involucra la cohomología de Lie–Rinehart del par (S; L) y la cohomología de Hochschild de S a valores en U .
Given a free hyperplane arrangement A in a vector space V over a field of characteristic zero, we study the algebra Diff(A) of differential operators on V which are tangent to the hyperplanes of A from the point of view of homological algebra. We make a thorough study of this algebra for the case of a central arrangement of lines in a vector space of dimension 2. Among other things, we determine the Hochschild cohomology HH(Diff(A)) as a Gerstenhaber algebra, establish a connection between that cohomology and the de Rham cohomology of the complement M(A) of the arrangement, determine the isomorphism group of Diff(A), classify the algebras of that form up to isomorphism and study the formal deformations of Diff(A). We show that in the general setting of a free arrangement of hyperplanes of arbitrary dimension the algebra Diff(A) is isomorphic to the enveloping algebra of the Lie–Rinehart pair formed by the algebra of coordinates functions on the vector space and the Lie algebra of derivations tangent to the arrangement. The computation of the Hochschild cohomology of Diff(A) can be then put in the context of computing that of the enveloping algebra U of a Lie–Rinehart pair (S; L): we provide a method to do this if L is S-projective. Concretely, we present a spectral sequence which converges to HH(U ) and whose second page involves the Lie—Rinehart cohomology of the pair and the Hochschild cohomology of S with values on U .
Fil: Kordon, Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
ARREGLOS DE HIPERPLANOS
COHOMOLOGIA DE HOCHSCHILD
ALGEBRAS DE OPERADORES DIFERENCIALES
PARES DE LIE-RINEHART
TEORIA DE DEFORMACIONES
HYPERPLANE ARRANGEMENTS
HOCHSCHILD COHOMOLOGY
ALGEBRAS OF DIFFERENTIAL OPERATORS
LIE-RINEHART PAIRS
DEFORMATION THEORY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n6670_Kordon

id BDUBAFCEN_035aaff87990a585f71b1a569d86236c
oai_identifier_str tesis:tesis_n6670_Kordon
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanosHochschild cohomology of algebras of differential operators associated with hyperplane arrangementsKordon, FranciscoARREGLOS DE HIPERPLANOSCOHOMOLOGIA DE HOCHSCHILDALGEBRAS DE OPERADORES DIFERENCIALESPARES DE LIE-RINEHARTTEORIA DE DEFORMACIONESHYPERPLANE ARRANGEMENTSHOCHSCHILD COHOMOLOGYALGEBRAS OF DIFFERENTIAL OPERATORSLIE-RINEHART PAIRSDEFORMATION THEORYDado un arreglo de hiperplanos A en un espacio vectorial V sobre un cuerpo de característica cero, estudiamos el álgebra Diff(A) de operadores diferenciales enV tangentes a los hiperplanos de A desde el punto de vista del álgebra homológica. Hacemos un estudio detallado de este álgebra para el caso de un arreglo central de rectas en un espacio vectorial de dimensión 2. Entre otras cosas, determinamos la cohomología de Hochschild HH(Diff(A)) como álgebra de Gerstenhaber, establecemos un vínculo entre ésta y la cohomología de de Rham del complemento M(A) del arreglo, determinamos el grupo de isomorfismos de Diff(A), clasificamos las álgebras de esta forma a menos de isomorfismo y estudiamos las deformaciones formales de Diff(A). Mostramos que en el contexto general de un arreglo de hiperplanos de dimensión arbitraria el álgebra Diff(A) es isomorfa al álgebra envolvente del par de Lie–Rinehart formado por el álgebra de funciones coordenadas del espacio vectorial y el álgebra de Lie de derivaciones tangentes al arreglo. El cálculo de la cohomología de Hochschild de Diff(A) puede ser ubicado entonces en el contexto del cálculo de la del álgebra envolvente U de un par de Lie–Rinehart (S; L): damos un método para hacer esto en el caso en que L es un S-módulo proyectivo. Concretamente, presentamos una sucesión espectral que converge a HH(U ) cuya segunda página involucra la cohomología de Lie–Rinehart del par (S; L) y la cohomología de Hochschild de S a valores en U .Given a free hyperplane arrangement A in a vector space V over a field of characteristic zero, we study the algebra Diff(A) of differential operators on V which are tangent to the hyperplanes of A from the point of view of homological algebra. We make a thorough study of this algebra for the case of a central arrangement of lines in a vector space of dimension 2. Among other things, we determine the Hochschild cohomology HH(Diff(A)) as a Gerstenhaber algebra, establish a connection between that cohomology and the de Rham cohomology of the complement M(A) of the arrangement, determine the isomorphism group of Diff(A), classify the algebras of that form up to isomorphism and study the formal deformations of Diff(A). We show that in the general setting of a free arrangement of hyperplanes of arbitrary dimension the algebra Diff(A) is isomorphic to the enveloping algebra of the Lie–Rinehart pair formed by the algebra of coordinates functions on the vector space and the Lie algebra of derivations tangent to the arrangement. The computation of the Hochschild cohomology of Diff(A) can be then put in the context of computing that of the enveloping algebra U of a Lie–Rinehart pair (S; L): we provide a method to do this if L is S-projective. Concretely, we present a spectral sequence which converges to HH(U ) and whose second page involves the Lie—Rinehart cohomology of the pair and the Hochschild cohomology of S with values on U .Fil: Kordon, Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesSuárez-Álvarez, Mariano2019-04-12info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n6670_Kordonenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-09-29T13:42:31Ztesis:tesis_n6670_KordonInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:32.432Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanos
Hochschild cohomology of algebras of differential operators associated with hyperplane arrangements
title Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanos
spellingShingle Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanos
Kordon, Francisco
ARREGLOS DE HIPERPLANOS
COHOMOLOGIA DE HOCHSCHILD
ALGEBRAS DE OPERADORES DIFERENCIALES
PARES DE LIE-RINEHART
TEORIA DE DEFORMACIONES
HYPERPLANE ARRANGEMENTS
HOCHSCHILD COHOMOLOGY
ALGEBRAS OF DIFFERENTIAL OPERATORS
LIE-RINEHART PAIRS
DEFORMATION THEORY
title_short Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanos
title_full Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanos
title_fullStr Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanos
title_full_unstemmed Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanos
title_sort Cohomología de Hochschild de álgebras de operadores diferenciales asociadas a arreglos de hiperplanos
dc.creator.none.fl_str_mv Kordon, Francisco
author Kordon, Francisco
author_facet Kordon, Francisco
author_role author
dc.contributor.none.fl_str_mv Suárez-Álvarez, Mariano
dc.subject.none.fl_str_mv ARREGLOS DE HIPERPLANOS
COHOMOLOGIA DE HOCHSCHILD
ALGEBRAS DE OPERADORES DIFERENCIALES
PARES DE LIE-RINEHART
TEORIA DE DEFORMACIONES
HYPERPLANE ARRANGEMENTS
HOCHSCHILD COHOMOLOGY
ALGEBRAS OF DIFFERENTIAL OPERATORS
LIE-RINEHART PAIRS
DEFORMATION THEORY
topic ARREGLOS DE HIPERPLANOS
COHOMOLOGIA DE HOCHSCHILD
ALGEBRAS DE OPERADORES DIFERENCIALES
PARES DE LIE-RINEHART
TEORIA DE DEFORMACIONES
HYPERPLANE ARRANGEMENTS
HOCHSCHILD COHOMOLOGY
ALGEBRAS OF DIFFERENTIAL OPERATORS
LIE-RINEHART PAIRS
DEFORMATION THEORY
dc.description.none.fl_txt_mv Dado un arreglo de hiperplanos A en un espacio vectorial V sobre un cuerpo de característica cero, estudiamos el álgebra Diff(A) de operadores diferenciales enV tangentes a los hiperplanos de A desde el punto de vista del álgebra homológica. Hacemos un estudio detallado de este álgebra para el caso de un arreglo central de rectas en un espacio vectorial de dimensión 2. Entre otras cosas, determinamos la cohomología de Hochschild HH(Diff(A)) como álgebra de Gerstenhaber, establecemos un vínculo entre ésta y la cohomología de de Rham del complemento M(A) del arreglo, determinamos el grupo de isomorfismos de Diff(A), clasificamos las álgebras de esta forma a menos de isomorfismo y estudiamos las deformaciones formales de Diff(A). Mostramos que en el contexto general de un arreglo de hiperplanos de dimensión arbitraria el álgebra Diff(A) es isomorfa al álgebra envolvente del par de Lie–Rinehart formado por el álgebra de funciones coordenadas del espacio vectorial y el álgebra de Lie de derivaciones tangentes al arreglo. El cálculo de la cohomología de Hochschild de Diff(A) puede ser ubicado entonces en el contexto del cálculo de la del álgebra envolvente U de un par de Lie–Rinehart (S; L): damos un método para hacer esto en el caso en que L es un S-módulo proyectivo. Concretamente, presentamos una sucesión espectral que converge a HH(U ) cuya segunda página involucra la cohomología de Lie–Rinehart del par (S; L) y la cohomología de Hochschild de S a valores en U .
Given a free hyperplane arrangement A in a vector space V over a field of characteristic zero, we study the algebra Diff(A) of differential operators on V which are tangent to the hyperplanes of A from the point of view of homological algebra. We make a thorough study of this algebra for the case of a central arrangement of lines in a vector space of dimension 2. Among other things, we determine the Hochschild cohomology HH(Diff(A)) as a Gerstenhaber algebra, establish a connection between that cohomology and the de Rham cohomology of the complement M(A) of the arrangement, determine the isomorphism group of Diff(A), classify the algebras of that form up to isomorphism and study the formal deformations of Diff(A). We show that in the general setting of a free arrangement of hyperplanes of arbitrary dimension the algebra Diff(A) is isomorphic to the enveloping algebra of the Lie–Rinehart pair formed by the algebra of coordinates functions on the vector space and the Lie algebra of derivations tangent to the arrangement. The computation of the Hochschild cohomology of Diff(A) can be then put in the context of computing that of the enveloping algebra U of a Lie–Rinehart pair (S; L): we provide a method to do this if L is S-projective. Concretely, we present a spectral sequence which converges to HH(U ) and whose second page involves the Lie—Rinehart cohomology of the pair and the Hochschild cohomology of S with values on U .
Fil: Kordon, Francisco. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Dado un arreglo de hiperplanos A en un espacio vectorial V sobre un cuerpo de característica cero, estudiamos el álgebra Diff(A) de operadores diferenciales enV tangentes a los hiperplanos de A desde el punto de vista del álgebra homológica. Hacemos un estudio detallado de este álgebra para el caso de un arreglo central de rectas en un espacio vectorial de dimensión 2. Entre otras cosas, determinamos la cohomología de Hochschild HH(Diff(A)) como álgebra de Gerstenhaber, establecemos un vínculo entre ésta y la cohomología de de Rham del complemento M(A) del arreglo, determinamos el grupo de isomorfismos de Diff(A), clasificamos las álgebras de esta forma a menos de isomorfismo y estudiamos las deformaciones formales de Diff(A). Mostramos que en el contexto general de un arreglo de hiperplanos de dimensión arbitraria el álgebra Diff(A) es isomorfa al álgebra envolvente del par de Lie–Rinehart formado por el álgebra de funciones coordenadas del espacio vectorial y el álgebra de Lie de derivaciones tangentes al arreglo. El cálculo de la cohomología de Hochschild de Diff(A) puede ser ubicado entonces en el contexto del cálculo de la del álgebra envolvente U de un par de Lie–Rinehart (S; L): damos un método para hacer esto en el caso en que L es un S-módulo proyectivo. Concretamente, presentamos una sucesión espectral que converge a HH(U ) cuya segunda página involucra la cohomología de Lie–Rinehart del par (S; L) y la cohomología de Hochschild de S a valores en U .
publishDate 2019
dc.date.none.fl_str_mv 2019-04-12
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n6670_Kordon
url https://hdl.handle.net/20.500.12110/tesis_n6670_Kordon
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618727691124736
score 13.070432