Normal numbers and finite automata
- Autores
- Becher, V.; Heiber, P.A.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Theor Comput Sci 2013;477:109-116
- Materia
-
Finite state transducers
Finite-state
Input-output
Lossless
Normal numbers
Output transition
Real number
Number theory
Theorem proving
Finite automata - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03043975_v477_n_p109_Becher
Ver los metadatos del registro completo
| id |
BDUBAFCEN_01113a299214674176fc83f66e35b09c |
|---|---|
| oai_identifier_str |
paperaa:paper_03043975_v477_n_p109_Becher |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Normal numbers and finite automataBecher, V.Heiber, P.A.Finite state transducersFinite-stateInput-outputLosslessNormal numbersOutput transitionReal numberNumber theoryTheorem provingFinite automataWe give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved.Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03043975_v477_n_p109_BecherTheor Comput Sci 2013;477:109-116reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:54Zpaperaa:paper_03043975_v477_n_p109_BecherInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:56.294Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Normal numbers and finite automata |
| title |
Normal numbers and finite automata |
| spellingShingle |
Normal numbers and finite automata Becher, V. Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata |
| title_short |
Normal numbers and finite automata |
| title_full |
Normal numbers and finite automata |
| title_fullStr |
Normal numbers and finite automata |
| title_full_unstemmed |
Normal numbers and finite automata |
| title_sort |
Normal numbers and finite automata |
| dc.creator.none.fl_str_mv |
Becher, V. Heiber, P.A. |
| author |
Becher, V. |
| author_facet |
Becher, V. Heiber, P.A. |
| author_role |
author |
| author2 |
Heiber, P.A. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata |
| topic |
Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata |
| dc.description.none.fl_txt_mv |
We give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
We give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03043975_v477_n_p109_Becher |
| url |
http://hdl.handle.net/20.500.12110/paper_03043975_v477_n_p109_Becher |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Theor Comput Sci 2013;477:109-116 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046097449091072 |
| score |
13.087074 |