Normal numbers and finite automata
- Autores
- Becher, V.; Heiber, P.A.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Theor Comput Sci 2013;477:109-116
- Materia
-
Finite state transducers
Finite-state
Input-output
Lossless
Normal numbers
Output transition
Real number
Number theory
Theorem proving
Finite automata - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03043975_v477_n_p109_Becher
Ver los metadatos del registro completo
id |
BDUBAFCEN_01113a299214674176fc83f66e35b09c |
---|---|
oai_identifier_str |
paperaa:paper_03043975_v477_n_p109_Becher |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Normal numbers and finite automataBecher, V.Heiber, P.A.Finite state transducersFinite-stateInput-outputLosslessNormal numbersOutput transitionReal numberNumber theoryTheorem provingFinite automataWe give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved.Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03043975_v477_n_p109_BecherTheor Comput Sci 2013;477:109-116reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:44Zpaperaa:paper_03043975_v477_n_p109_BecherInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:45.817Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Normal numbers and finite automata |
title |
Normal numbers and finite automata |
spellingShingle |
Normal numbers and finite automata Becher, V. Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata |
title_short |
Normal numbers and finite automata |
title_full |
Normal numbers and finite automata |
title_fullStr |
Normal numbers and finite automata |
title_full_unstemmed |
Normal numbers and finite automata |
title_sort |
Normal numbers and finite automata |
dc.creator.none.fl_str_mv |
Becher, V. Heiber, P.A. |
author |
Becher, V. |
author_facet |
Becher, V. Heiber, P.A. |
author_role |
author |
author2 |
Heiber, P.A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata |
topic |
Finite state transducers Finite-state Input-output Lossless Normal numbers Output transition Real number Number theory Theorem proving Finite automata |
dc.description.none.fl_txt_mv |
We give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Heiber, P.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We give an elementary and direct proof of the following theorem: A real number is normal to a given integer base if, and only if, its expansion in that base is incompressible by lossless finite-state compressors (these are finite automata augmented with an output transition function such that the automata input-output behaviour is injective; they are also known as injective finite-state transducers). As a corollary we obtain V.N. Agafonov's theorem on the preservation of normality on subsequences selected by finite automata.© 2012 Elsevier B.V. All rights reserved. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03043975_v477_n_p109_Becher |
url |
http://hdl.handle.net/20.500.12110/paper_03043975_v477_n_p109_Becher |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Theor Comput Sci 2013;477:109-116 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340707128311808 |
score |
12.623145 |