Turing's unpublished algorithm for normal numbers
- Autores
- Becher, V.; Figueira, S.; Picchi, R.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In an unpublished manuscript, Alan Turing gave a computable construction to show that absolutely normal real numbers between 0 and 1 have Lebesgue measure 1; furthermore, he gave an algorithm for computing instances in this set. We complete his manuscript by giving full proofs and correcting minor errors. While doing this, we recreate Turing's ideas as accurately as possible. One of his original lemmas remained unproved, but we have replaced it with a weaker lemma that still allows us to maintain Turing's proof idea and obtain his result. © 2007 Elsevier Ltd. All rights reserved.
Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Theor Comput Sci 2007;377(1-3):126-138
- Materia
-
Algorithm for normal numbers
Computable absolutely normal numbers
Turing's unpublished manuscript
Error correction
Number theory
Set theory
Theorem proving
Turing machines
Computable construction
Lebesgue measure
Manuscripts
Normal numbers
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03043975_v377_n1-3_p126_Becher
Ver los metadatos del registro completo
id |
BDUBAFCEN_9f13b5fea4cb4ccb6f28d6cfd99f35bf |
---|---|
oai_identifier_str |
paperaa:paper_03043975_v377_n1-3_p126_Becher |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Turing's unpublished algorithm for normal numbersBecher, V.Figueira, S.Picchi, R.Algorithm for normal numbersComputable absolutely normal numbersTuring's unpublished manuscriptError correctionNumber theorySet theoryTheorem provingTuring machinesComputable constructionLebesgue measureManuscriptsNormal numbersAlgorithmsIn an unpublished manuscript, Alan Turing gave a computable construction to show that absolutely normal real numbers between 0 and 1 have Lebesgue measure 1; furthermore, he gave an algorithm for computing instances in this set. We complete his manuscript by giving full proofs and correcting minor errors. While doing this, we recreate Turing's ideas as accurately as possible. One of his original lemmas remained unproved, but we have replaced it with a weaker lemma that still allows us to maintain Turing's proof idea and obtain his result. © 2007 Elsevier Ltd. All rights reserved.Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03043975_v377_n1-3_p126_BecherTheor Comput Sci 2007;377(1-3):126-138reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:35Zpaperaa:paper_03043975_v377_n1-3_p126_BecherInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:36.608Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Turing's unpublished algorithm for normal numbers |
title |
Turing's unpublished algorithm for normal numbers |
spellingShingle |
Turing's unpublished algorithm for normal numbers Becher, V. Algorithm for normal numbers Computable absolutely normal numbers Turing's unpublished manuscript Error correction Number theory Set theory Theorem proving Turing machines Computable construction Lebesgue measure Manuscripts Normal numbers Algorithms |
title_short |
Turing's unpublished algorithm for normal numbers |
title_full |
Turing's unpublished algorithm for normal numbers |
title_fullStr |
Turing's unpublished algorithm for normal numbers |
title_full_unstemmed |
Turing's unpublished algorithm for normal numbers |
title_sort |
Turing's unpublished algorithm for normal numbers |
dc.creator.none.fl_str_mv |
Becher, V. Figueira, S. Picchi, R. |
author |
Becher, V. |
author_facet |
Becher, V. Figueira, S. Picchi, R. |
author_role |
author |
author2 |
Figueira, S. Picchi, R. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Algorithm for normal numbers Computable absolutely normal numbers Turing's unpublished manuscript Error correction Number theory Set theory Theorem proving Turing machines Computable construction Lebesgue measure Manuscripts Normal numbers Algorithms |
topic |
Algorithm for normal numbers Computable absolutely normal numbers Turing's unpublished manuscript Error correction Number theory Set theory Theorem proving Turing machines Computable construction Lebesgue measure Manuscripts Normal numbers Algorithms |
dc.description.none.fl_txt_mv |
In an unpublished manuscript, Alan Turing gave a computable construction to show that absolutely normal real numbers between 0 and 1 have Lebesgue measure 1; furthermore, he gave an algorithm for computing instances in this set. We complete his manuscript by giving full proofs and correcting minor errors. While doing this, we recreate Turing's ideas as accurately as possible. One of his original lemmas remained unproved, but we have replaced it with a weaker lemma that still allows us to maintain Turing's proof idea and obtain his result. © 2007 Elsevier Ltd. All rights reserved. Fil:Becher, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In an unpublished manuscript, Alan Turing gave a computable construction to show that absolutely normal real numbers between 0 and 1 have Lebesgue measure 1; furthermore, he gave an algorithm for computing instances in this set. We complete his manuscript by giving full proofs and correcting minor errors. While doing this, we recreate Turing's ideas as accurately as possible. One of his original lemmas remained unproved, but we have replaced it with a weaker lemma that still allows us to maintain Turing's proof idea and obtain his result. © 2007 Elsevier Ltd. All rights reserved. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03043975_v377_n1-3_p126_Becher |
url |
http://hdl.handle.net/20.500.12110/paper_03043975_v377_n1-3_p126_Becher |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Theor Comput Sci 2007;377(1-3):126-138 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340704565592064 |
score |
12.623145 |