A cellular automata to model epidemics
- Autores
- López, L; Burguener, G.; Giovanini, Leonardo L.; Baldomenico, P.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Compartmental models are very popular in epidemiology, they provide excellent results when the populations satisfy certain hypotheses as large population size or population homogeneity, the complexity of this models is low making their analysis intuitive. In the other hand, they ignore important factors inherent to the problem, such as the nature of contacts between individuals and population heterogeneity. Cellular automata models are adequate to describe natural systems consisting of a massive collection of simple objects. They represent the global system behavior as a colection of simpler objects or cells. In this paper we propouse a cellular automata model to study the time evolution of a heterogeneous population through the various stages of disease resulting from the individuals interactions (epidemic). We validate the model with real data of flu that hit Geneva (Switzerland) in 1918 and then we will test the model under different assumptions discussing the result that each has on the disease dynamics.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Cellular automata
Modell
Epidemics
Heterogeneity
Individual based model
Public health - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/93778
Ver los metadatos del registro completo
id |
SEDICI_fe272304ac20dd59588a155a0853cd7f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/93778 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A cellular automata to model epidemicsLópez, LBurguener, G.Giovanini, Leonardo L.Baldomenico, P.Ciencias InformáticasCellular automataModellEpidemicsHeterogeneityIndividual based modelPublic healthCompartmental models are very popular in epidemiology, they provide excellent results when the populations satisfy certain hypotheses as large population size or population homogeneity, the complexity of this models is low making their analysis intuitive. In the other hand, they ignore important factors inherent to the problem, such as the nature of contacts between individuals and population heterogeneity. Cellular automata models are adequate to describe natural systems consisting of a massive collection of simple objects. They represent the global system behavior as a colection of simpler objects or cells. In this paper we propouse a cellular automata model to study the time evolution of a heterogeneous population through the various stages of disease resulting from the individuals interactions (epidemic). We validate the model with real data of flu that hit Geneva (Switzerland) in 1918 and then we will test the model under different assumptions discussing the result that each has on the disease dynamics.Sociedad Argentina de Informática e Investigación Operativa2013-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf150-161http://sedici.unlp.edu.ar/handle/10915/93778enginfo:eu-repo/semantics/altIdentifier/issn/1853-1881info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:31Zoai:sedici.unlp.edu.ar:10915/93778Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:31.916SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A cellular automata to model epidemics |
title |
A cellular automata to model epidemics |
spellingShingle |
A cellular automata to model epidemics López, L Ciencias Informáticas Cellular automata Modell Epidemics Heterogeneity Individual based model Public health |
title_short |
A cellular automata to model epidemics |
title_full |
A cellular automata to model epidemics |
title_fullStr |
A cellular automata to model epidemics |
title_full_unstemmed |
A cellular automata to model epidemics |
title_sort |
A cellular automata to model epidemics |
dc.creator.none.fl_str_mv |
López, L Burguener, G. Giovanini, Leonardo L. Baldomenico, P. |
author |
López, L |
author_facet |
López, L Burguener, G. Giovanini, Leonardo L. Baldomenico, P. |
author_role |
author |
author2 |
Burguener, G. Giovanini, Leonardo L. Baldomenico, P. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Cellular automata Modell Epidemics Heterogeneity Individual based model Public health |
topic |
Ciencias Informáticas Cellular automata Modell Epidemics Heterogeneity Individual based model Public health |
dc.description.none.fl_txt_mv |
Compartmental models are very popular in epidemiology, they provide excellent results when the populations satisfy certain hypotheses as large population size or population homogeneity, the complexity of this models is low making their analysis intuitive. In the other hand, they ignore important factors inherent to the problem, such as the nature of contacts between individuals and population heterogeneity. Cellular automata models are adequate to describe natural systems consisting of a massive collection of simple objects. They represent the global system behavior as a colection of simpler objects or cells. In this paper we propouse a cellular automata model to study the time evolution of a heterogeneous population through the various stages of disease resulting from the individuals interactions (epidemic). We validate the model with real data of flu that hit Geneva (Switzerland) in 1918 and then we will test the model under different assumptions discussing the result that each has on the disease dynamics. Sociedad Argentina de Informática e Investigación Operativa |
description |
Compartmental models are very popular in epidemiology, they provide excellent results when the populations satisfy certain hypotheses as large population size or population homogeneity, the complexity of this models is low making their analysis intuitive. In the other hand, they ignore important factors inherent to the problem, such as the nature of contacts between individuals and population heterogeneity. Cellular automata models are adequate to describe natural systems consisting of a massive collection of simple objects. They represent the global system behavior as a colection of simpler objects or cells. In this paper we propouse a cellular automata model to study the time evolution of a heterogeneous population through the various stages of disease resulting from the individuals interactions (epidemic). We validate the model with real data of flu that hit Geneva (Switzerland) in 1918 and then we will test the model under different assumptions discussing the result that each has on the disease dynamics. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/93778 |
url |
http://sedici.unlp.edu.ar/handle/10915/93778 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1853-1881 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 150-161 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616068981587968 |
score |
13.070432 |