Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting Control
- Autores
- Kunusch, Cristian; Puleston, Pablo Federico; Mayosky, Miguel Angel; Dávila, Alejandro
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A robust control solution is proposed to solve the air supply control problem in autonomous polymer electrolyte membrane fuel cells (PEMFC) based systems. Different second order sliding mode (SOSM) controllers are designed using a model of a laboratory test fuel cell generation system. Very good simulation results are obtained using such algorithms, showing the suitability of the SOSM approach to PEMFC stack breathing control. Subsequently, for experimental validation, a controller based on one of the previously assessed SOSM algorithms, namely a Super Twisting, is successfully implemented in the laboratory test bench. Highly satisfactory results are obtained, regarding dynamic behaviour, regulation error and robustness to uncertainties and external disturbances.
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales - Materia
- Ingeniería Electrónica
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/97887
Ver los metadatos del registro completo
id |
SEDICI_38339bc8f4ae2a3e37c25abc04bf5cc5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/97887 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting ControlKunusch, CristianPuleston, Pablo FedericoMayosky, Miguel AngelDávila, AlejandroIngeniería ElectrónicaA robust control solution is proposed to solve the air supply control problem in autonomous polymer electrolyte membrane fuel cells (PEMFC) based systems. Different second order sliding mode (SOSM) controllers are designed using a model of a laboratory test fuel cell generation system. Very good simulation results are obtained using such algorithms, showing the suitability of the SOSM approach to PEMFC stack breathing control. Subsequently, for experimental validation, a controller based on one of the previously assessed SOSM algorithms, namely a Super Twisting, is successfully implemented in the laboratory test bench. Highly satisfactory results are obtained, regarding dynamic behaviour, regulation error and robustness to uncertainties and external disturbances.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/97887enginfo:eu-repo/semantics/altIdentifier/doi/10.1109/VSS.2010.5544677info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:21:15Zoai:sedici.unlp.edu.ar:10915/97887Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:21:15.374SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting Control |
title |
Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting Control |
spellingShingle |
Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting Control Kunusch, Cristian Ingeniería Electrónica |
title_short |
Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting Control |
title_full |
Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting Control |
title_fullStr |
Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting Control |
title_full_unstemmed |
Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting Control |
title_sort |
Efficiency Optimisation of an Experimental PEM Fuel Cell System via Super Twisting Control |
dc.creator.none.fl_str_mv |
Kunusch, Cristian Puleston, Pablo Federico Mayosky, Miguel Angel Dávila, Alejandro |
author |
Kunusch, Cristian |
author_facet |
Kunusch, Cristian Puleston, Pablo Federico Mayosky, Miguel Angel Dávila, Alejandro |
author_role |
author |
author2 |
Puleston, Pablo Federico Mayosky, Miguel Angel Dávila, Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ingeniería Electrónica |
topic |
Ingeniería Electrónica |
dc.description.none.fl_txt_mv |
A robust control solution is proposed to solve the air supply control problem in autonomous polymer electrolyte membrane fuel cells (PEMFC) based systems. Different second order sliding mode (SOSM) controllers are designed using a model of a laboratory test fuel cell generation system. Very good simulation results are obtained using such algorithms, showing the suitability of the SOSM approach to PEMFC stack breathing control. Subsequently, for experimental validation, a controller based on one of the previously assessed SOSM algorithms, namely a Super Twisting, is successfully implemented in the laboratory test bench. Highly satisfactory results are obtained, regarding dynamic behaviour, regulation error and robustness to uncertainties and external disturbances. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales |
description |
A robust control solution is proposed to solve the air supply control problem in autonomous polymer electrolyte membrane fuel cells (PEMFC) based systems. Different second order sliding mode (SOSM) controllers are designed using a model of a laboratory test fuel cell generation system. Very good simulation results are obtained using such algorithms, showing the suitability of the SOSM approach to PEMFC stack breathing control. Subsequently, for experimental validation, a controller based on one of the previously assessed SOSM algorithms, namely a Super Twisting, is successfully implemented in the laboratory test bench. Highly satisfactory results are obtained, regarding dynamic behaviour, regulation error and robustness to uncertainties and external disturbances. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/97887 |
url |
http://sedici.unlp.edu.ar/handle/10915/97887 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/VSS.2010.5544677 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616087711252480 |
score |
13.070432 |