The breaking of the Equivalence Principle in theories with varying α
- Autores
- Kraiselburd, Lucila; Vucetich, Héctor
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The Standard Model and General Relativity provide a good description of phenomena at low energy. These theories, which agree very well with the experiment, contain a set of parameters called “fundamental constants”, that are assumed invariant under changes in location and reference system. However, their possible variation has been studied since Dirac made the large numbers hypothesis (LNH). Moreover, unified field theory and extra dimensions theories such as Kaluza-Klein or Superstring theories, state not only the variation of these constants, but also the simultaneity of the variations. The Eötvös effect is one of the most sensitive indicators of changes in fundamental constants. Bekenstein (2002) showed that in his theory, using a classical static particle model of matter, there is no Eötvös effect and therefore met the Universality of Free Fall and the Principle of Equivalence. We present different results than those obtained by Bekenstein, Kraiselburd, Vucetich (2009). Modifying his theory, taking more realistic models of matter and using the model THεμ techniques (Ligtman-Lee (1975) and Haugan (1979), not used before to analyze this model), very small but measurable effects have been found.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Física
low energy
large numbers hypothesis
fundamental constants - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/145141
Ver los metadatos del registro completo
id |
SEDICI_f948475cb3da13b7a83cd7a2c5c32926 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/145141 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
The breaking of the Equivalence Principle in theories with varying αKraiselburd, LucilaVucetich, HéctorFísicalow energylarge numbers hypothesisfundamental constantsThe Standard Model and General Relativity provide a good description of phenomena at low energy. These theories, which agree very well with the experiment, contain a set of parameters called “fundamental constants”, that are assumed invariant under changes in location and reference system. However, their possible variation has been studied since Dirac made the large numbers hypothesis (LNH). Moreover, unified field theory and extra dimensions theories such as Kaluza-Klein or Superstring theories, state not only the variation of these constants, but also the simultaneity of the variations. The Eötvös effect is one of the most sensitive indicators of changes in fundamental constants. Bekenstein (2002) showed that in his theory, using a classical static particle model of matter, there is no Eötvös effect and therefore met the Universality of Free Fall and the Principle of Equivalence. We present different results than those obtained by Bekenstein, Kraiselburd, Vucetich (2009). Modifying his theory, taking more realistic models of matter and using the model THεμ techniques (Ligtman-Lee (1975) and Haugan (1979), not used before to analyze this model), very small but measurable effects have been found.Facultad de Ciencias Astronómicas y Geofísicas2009-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf327-327http://sedici.unlp.edu.ar/handle/10915/145141enginfo:eu-repo/semantics/altIdentifier/issn/1743-9213info:eu-repo/semantics/altIdentifier/issn/1743-9221info:eu-repo/semantics/altIdentifier/doi/10.1017/s1743921310009646info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:26Zoai:sedici.unlp.edu.ar:10915/145141Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:27.161SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
The breaking of the Equivalence Principle in theories with varying α |
title |
The breaking of the Equivalence Principle in theories with varying α |
spellingShingle |
The breaking of the Equivalence Principle in theories with varying α Kraiselburd, Lucila Física low energy large numbers hypothesis fundamental constants |
title_short |
The breaking of the Equivalence Principle in theories with varying α |
title_full |
The breaking of the Equivalence Principle in theories with varying α |
title_fullStr |
The breaking of the Equivalence Principle in theories with varying α |
title_full_unstemmed |
The breaking of the Equivalence Principle in theories with varying α |
title_sort |
The breaking of the Equivalence Principle in theories with varying α |
dc.creator.none.fl_str_mv |
Kraiselburd, Lucila Vucetich, Héctor |
author |
Kraiselburd, Lucila |
author_facet |
Kraiselburd, Lucila Vucetich, Héctor |
author_role |
author |
author2 |
Vucetich, Héctor |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física low energy large numbers hypothesis fundamental constants |
topic |
Física low energy large numbers hypothesis fundamental constants |
dc.description.none.fl_txt_mv |
The Standard Model and General Relativity provide a good description of phenomena at low energy. These theories, which agree very well with the experiment, contain a set of parameters called “fundamental constants”, that are assumed invariant under changes in location and reference system. However, their possible variation has been studied since Dirac made the large numbers hypothesis (LNH). Moreover, unified field theory and extra dimensions theories such as Kaluza-Klein or Superstring theories, state not only the variation of these constants, but also the simultaneity of the variations. The Eötvös effect is one of the most sensitive indicators of changes in fundamental constants. Bekenstein (2002) showed that in his theory, using a classical static particle model of matter, there is no Eötvös effect and therefore met the Universality of Free Fall and the Principle of Equivalence. We present different results than those obtained by Bekenstein, Kraiselburd, Vucetich (2009). Modifying his theory, taking more realistic models of matter and using the model THεμ techniques (Ligtman-Lee (1975) and Haugan (1979), not used before to analyze this model), very small but measurable effects have been found. Facultad de Ciencias Astronómicas y Geofísicas |
description |
The Standard Model and General Relativity provide a good description of phenomena at low energy. These theories, which agree very well with the experiment, contain a set of parameters called “fundamental constants”, that are assumed invariant under changes in location and reference system. However, their possible variation has been studied since Dirac made the large numbers hypothesis (LNH). Moreover, unified field theory and extra dimensions theories such as Kaluza-Klein or Superstring theories, state not only the variation of these constants, but also the simultaneity of the variations. The Eötvös effect is one of the most sensitive indicators of changes in fundamental constants. Bekenstein (2002) showed that in his theory, using a classical static particle model of matter, there is no Eötvös effect and therefore met the Universality of Free Fall and the Principle of Equivalence. We present different results than those obtained by Bekenstein, Kraiselburd, Vucetich (2009). Modifying his theory, taking more realistic models of matter and using the model THεμ techniques (Ligtman-Lee (1975) and Haugan (1979), not used before to analyze this model), very small but measurable effects have been found. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/145141 |
url |
http://sedici.unlp.edu.ar/handle/10915/145141 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1743-9213 info:eu-repo/semantics/altIdentifier/issn/1743-9221 info:eu-repo/semantics/altIdentifier/doi/10.1017/s1743921310009646 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 327-327 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616203941707776 |
score |
13.070432 |