Equivalence principle in chameleon models
- Autores
- Kraiselburd, Lucila; Landau, Susana Judith; Salgado, Marcelo; Sudarsky, Daniel; Vucetich, Hector
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Most theories that predict time and/or space variation of fundamental constants also predict violations of the weak equivalence principle (WEP). In 2004 Khoury and Weltman [1] proposed the so called chameleon field arguing that it could help avoiding experimental bounds on the WEP while having a nontrivial cosmological impact. In this paper we revisit the extent to which these expectations continue to hold as we enter the regime of high precision tests. The basis of the study is the development of a new method for computing the force between two massive bodies induced by the chameleon field which takes into account the influence on the field by both, the large and the test bodies. We confirm that in the thin shell regime the force does depend nontrivially on the test body's composition, even when the chameleon coupling constants βi=β are universal. We also propose a simple criterion based on energy minimization, that we use to determine which of the approximations used in computing the scalar field in a two body problem is better in each specific regime. As an application of our analysis we then compare the resulting differential acceleration of two test bodies with the corresponding bounds obtained from Eötvös type experiments. We consider two setups: (1) an Earth based experiment where the test bodies are made of Be and Al; (2) the Lunar Laser Ranging experiment. We find that for some choices of the free parameters of the chameleon model the predictions of the Eötvös parameter are larger than some of the previous estimates. As a consequence, we put new constrains on these free parameters. Our conclusions strongly suggest that the properties of immunity from experimental tests of the WEP, usually attributed to the chameleon and related models, should be carefully reconsidered. An important result of our analysis is that our approach leads to new constraints on the parameter space of the chameleon models.
Fil: Kraiselburd, Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Salgado, Marcelo. Universidad Nacional Autónoma de México. Instituto de Ciencias Nucleares; México
Fil: Sudarsky, Daniel. Universidad Nacional Autónoma de México. Instituto de Ciencias Nucleares; México. University of New York; Estados Unidos
Fil: Vucetich, Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina - Materia
-
COSMOLOGY
FIELDS
GRAVITY
TEST - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98807
Ver los metadatos del registro completo
id |
CONICETDig_f93d8eb226d360eac72cf17d5a7e2df1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98807 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Equivalence principle in chameleon modelsKraiselburd, LucilaLandau, Susana JudithSalgado, MarceloSudarsky, DanielVucetich, HectorCOSMOLOGYFIELDSGRAVITYTESThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Most theories that predict time and/or space variation of fundamental constants also predict violations of the weak equivalence principle (WEP). In 2004 Khoury and Weltman [1] proposed the so called chameleon field arguing that it could help avoiding experimental bounds on the WEP while having a nontrivial cosmological impact. In this paper we revisit the extent to which these expectations continue to hold as we enter the regime of high precision tests. The basis of the study is the development of a new method for computing the force between two massive bodies induced by the chameleon field which takes into account the influence on the field by both, the large and the test bodies. We confirm that in the thin shell regime the force does depend nontrivially on the test body's composition, even when the chameleon coupling constants βi=β are universal. We also propose a simple criterion based on energy minimization, that we use to determine which of the approximations used in computing the scalar field in a two body problem is better in each specific regime. As an application of our analysis we then compare the resulting differential acceleration of two test bodies with the corresponding bounds obtained from Eötvös type experiments. We consider two setups: (1) an Earth based experiment where the test bodies are made of Be and Al; (2) the Lunar Laser Ranging experiment. We find that for some choices of the free parameters of the chameleon model the predictions of the Eötvös parameter are larger than some of the previous estimates. As a consequence, we put new constrains on these free parameters. Our conclusions strongly suggest that the properties of immunity from experimental tests of the WEP, usually attributed to the chameleon and related models, should be carefully reconsidered. An important result of our analysis is that our approach leads to new constraints on the parameter space of the chameleon models.Fil: Kraiselburd, Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Salgado, Marcelo. Universidad Nacional Autónoma de México. Instituto de Ciencias Nucleares; MéxicoFil: Sudarsky, Daniel. Universidad Nacional Autónoma de México. Instituto de Ciencias Nucleares; México. University of New York; Estados UnidosFil: Vucetich, Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaAmerican Physical Society2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98807Kraiselburd, Lucila; Landau, Susana Judith; Salgado, Marcelo; Sudarsky, Daniel; Vucetich, Hector; Equivalence principle in chameleon models; American Physical Society; Physical Review D; 97; 10; 5-2018; 1-35; 1040442470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.97.104044info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.97.104044info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1511.06307info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:18Zoai:ri.conicet.gov.ar:11336/98807instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:18.613CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Equivalence principle in chameleon models |
title |
Equivalence principle in chameleon models |
spellingShingle |
Equivalence principle in chameleon models Kraiselburd, Lucila COSMOLOGY FIELDS GRAVITY TEST |
title_short |
Equivalence principle in chameleon models |
title_full |
Equivalence principle in chameleon models |
title_fullStr |
Equivalence principle in chameleon models |
title_full_unstemmed |
Equivalence principle in chameleon models |
title_sort |
Equivalence principle in chameleon models |
dc.creator.none.fl_str_mv |
Kraiselburd, Lucila Landau, Susana Judith Salgado, Marcelo Sudarsky, Daniel Vucetich, Hector |
author |
Kraiselburd, Lucila |
author_facet |
Kraiselburd, Lucila Landau, Susana Judith Salgado, Marcelo Sudarsky, Daniel Vucetich, Hector |
author_role |
author |
author2 |
Landau, Susana Judith Salgado, Marcelo Sudarsky, Daniel Vucetich, Hector |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
COSMOLOGY FIELDS GRAVITY TEST |
topic |
COSMOLOGY FIELDS GRAVITY TEST |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Most theories that predict time and/or space variation of fundamental constants also predict violations of the weak equivalence principle (WEP). In 2004 Khoury and Weltman [1] proposed the so called chameleon field arguing that it could help avoiding experimental bounds on the WEP while having a nontrivial cosmological impact. In this paper we revisit the extent to which these expectations continue to hold as we enter the regime of high precision tests. The basis of the study is the development of a new method for computing the force between two massive bodies induced by the chameleon field which takes into account the influence on the field by both, the large and the test bodies. We confirm that in the thin shell regime the force does depend nontrivially on the test body's composition, even when the chameleon coupling constants βi=β are universal. We also propose a simple criterion based on energy minimization, that we use to determine which of the approximations used in computing the scalar field in a two body problem is better in each specific regime. As an application of our analysis we then compare the resulting differential acceleration of two test bodies with the corresponding bounds obtained from Eötvös type experiments. We consider two setups: (1) an Earth based experiment where the test bodies are made of Be and Al; (2) the Lunar Laser Ranging experiment. We find that for some choices of the free parameters of the chameleon model the predictions of the Eötvös parameter are larger than some of the previous estimates. As a consequence, we put new constrains on these free parameters. Our conclusions strongly suggest that the properties of immunity from experimental tests of the WEP, usually attributed to the chameleon and related models, should be carefully reconsidered. An important result of our analysis is that our approach leads to new constraints on the parameter space of the chameleon models. Fil: Kraiselburd, Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Salgado, Marcelo. Universidad Nacional Autónoma de México. Instituto de Ciencias Nucleares; México Fil: Sudarsky, Daniel. Universidad Nacional Autónoma de México. Instituto de Ciencias Nucleares; México. University of New York; Estados Unidos Fil: Vucetich, Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina |
description |
Most theories that predict time and/or space variation of fundamental constants also predict violations of the weak equivalence principle (WEP). In 2004 Khoury and Weltman [1] proposed the so called chameleon field arguing that it could help avoiding experimental bounds on the WEP while having a nontrivial cosmological impact. In this paper we revisit the extent to which these expectations continue to hold as we enter the regime of high precision tests. The basis of the study is the development of a new method for computing the force between two massive bodies induced by the chameleon field which takes into account the influence on the field by both, the large and the test bodies. We confirm that in the thin shell regime the force does depend nontrivially on the test body's composition, even when the chameleon coupling constants βi=β are universal. We also propose a simple criterion based on energy minimization, that we use to determine which of the approximations used in computing the scalar field in a two body problem is better in each specific regime. As an application of our analysis we then compare the resulting differential acceleration of two test bodies with the corresponding bounds obtained from Eötvös type experiments. We consider two setups: (1) an Earth based experiment where the test bodies are made of Be and Al; (2) the Lunar Laser Ranging experiment. We find that for some choices of the free parameters of the chameleon model the predictions of the Eötvös parameter are larger than some of the previous estimates. As a consequence, we put new constrains on these free parameters. Our conclusions strongly suggest that the properties of immunity from experimental tests of the WEP, usually attributed to the chameleon and related models, should be carefully reconsidered. An important result of our analysis is that our approach leads to new constraints on the parameter space of the chameleon models. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98807 Kraiselburd, Lucila; Landau, Susana Judith; Salgado, Marcelo; Sudarsky, Daniel; Vucetich, Hector; Equivalence principle in chameleon models; American Physical Society; Physical Review D; 97; 10; 5-2018; 1-35; 104044 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98807 |
identifier_str_mv |
Kraiselburd, Lucila; Landau, Susana Judith; Salgado, Marcelo; Sudarsky, Daniel; Vucetich, Hector; Equivalence principle in chameleon models; American Physical Society; Physical Review D; 97; 10; 5-2018; 1-35; 104044 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.97.104044 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.97.104044 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1511.06307 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613650696896512 |
score |
13.070432 |