Aplicaciones de las desigualdades con pesos a ecuaciones diferenciales

Autores
Cejas, María Eugenia
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Durán, Ricardo G.
Acosta, Gabriel
Descripción
Esta tesis se centra en estudiar la desigualdad de Poincaré mejorada con pesos y aplicaciones del Análisis Armónico a las ecuaciones diferenciales. En primer lugar obtenemos un teorema general que nos provee condiciones que deben cumplir dos pesos para que valga la desigualdad de Poincaré mejorada en dominios acotados y de John. Gracias a este teorema podemos proveer varios ejemplos de pesos que no están en la clase de Muckenhoupt Ap, en el caso particular de un peso. Para obtener aplicaciones a las ecuaciones diferenciales estudiamos la descomposición de una función de promedio cero como suma de funciones soportadas en cubos y de promedio cero. Esta descomposición está relacionada con la desigualdad de Poincaré mejorada y nos resultará útil para obtener la resolubilidad de la divergencia en espacios de Sobolev con pesos y así también para probar la desigualdad de Fefferman-Stein con pesos, en ambos casos para una clase de pesos más general que la clase de Muckenhoupt Ap. Damos un teorema general para que valga la resolubilidad de la divergencia en espacios de Sobolev. Por último estudiamos estimaciones a priori de soluciones de sistemas uniformemente elípticos en espacios con pesos en la clase de Muckenhoupt Ap. Damos una prueba más simple de la ya obtenida. Para ello necesitamos utilizar la desigualdad de Fefferman-Stein y una estimación puntual que involucra la función maximal sharp y la función maximal de Hardy-Littlewood. Además obtenemos como depende del peso la constante de las estimaciones a priori y probamos que está constante es sharp. En la línea de los sistemas elípticos obtenemos estimaciones a priori con dos pesos. En el caso particular del problema de Dirichlet para potencias del laplaciano damos una condición necesaria sobre el peso para que valgan las estimaciones a priori.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
ecuaciones
desigualdades con pesos, divergencia, ecuaciones elípticas, estimaciones a priori
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/57556

id SEDICI_f7d45775cf25aeb9cd7fded0bf37493d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/57556
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Aplicaciones de las desigualdades con pesos a ecuaciones diferencialesCejas, María EugeniaCiencias ExactasMatemáticaecuacionesdesigualdades con pesos, divergencia, ecuaciones elípticas, estimaciones a prioriEsta tesis se centra en estudiar la desigualdad de Poincaré mejorada con pesos y aplicaciones del Análisis Armónico a las ecuaciones diferenciales. En primer lugar obtenemos un teorema general que nos provee condiciones que deben cumplir dos pesos para que valga la desigualdad de Poincaré mejorada en dominios acotados y de John. Gracias a este teorema podemos proveer varios ejemplos de pesos que no están en la clase de Muckenhoupt Ap, en el caso particular de un peso. Para obtener aplicaciones a las ecuaciones diferenciales estudiamos la descomposición de una función de promedio cero como suma de funciones soportadas en cubos y de promedio cero. Esta descomposición está relacionada con la desigualdad de Poincaré mejorada y nos resultará útil para obtener la resolubilidad de la divergencia en espacios de Sobolev con pesos y así también para probar la desigualdad de Fefferman-Stein con pesos, en ambos casos para una clase de pesos más general que la clase de Muckenhoupt Ap. Damos un teorema general para que valga la resolubilidad de la divergencia en espacios de Sobolev. Por último estudiamos estimaciones a priori de soluciones de sistemas uniformemente elípticos en espacios con pesos en la clase de Muckenhoupt Ap. Damos una prueba más simple de la ya obtenida. Para ello necesitamos utilizar la desigualdad de Fefferman-Stein y una estimación puntual que involucra la función maximal sharp y la función maximal de Hardy-Littlewood. Además obtenemos como depende del peso la constante de las estimaciones a priori y probamos que está constante es sharp. En la línea de los sistemas elípticos obtenemos estimaciones a priori con dos pesos. En el caso particular del problema de Dirichlet para potencias del laplaciano damos una condición necesaria sobre el peso para que valgan las estimaciones a priori.Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasDurán, Ricardo G.Acosta, Gabriel2016-12-12info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/57556https://doi.org/10.35537/10915/57556spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:06:22Zoai:sedici.unlp.edu.ar:10915/57556Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:06:23.39SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Aplicaciones de las desigualdades con pesos a ecuaciones diferenciales
title Aplicaciones de las desigualdades con pesos a ecuaciones diferenciales
spellingShingle Aplicaciones de las desigualdades con pesos a ecuaciones diferenciales
Cejas, María Eugenia
Ciencias Exactas
Matemática
ecuaciones
desigualdades con pesos, divergencia, ecuaciones elípticas, estimaciones a priori
title_short Aplicaciones de las desigualdades con pesos a ecuaciones diferenciales
title_full Aplicaciones de las desigualdades con pesos a ecuaciones diferenciales
title_fullStr Aplicaciones de las desigualdades con pesos a ecuaciones diferenciales
title_full_unstemmed Aplicaciones de las desigualdades con pesos a ecuaciones diferenciales
title_sort Aplicaciones de las desigualdades con pesos a ecuaciones diferenciales
dc.creator.none.fl_str_mv Cejas, María Eugenia
author Cejas, María Eugenia
author_facet Cejas, María Eugenia
author_role author
dc.contributor.none.fl_str_mv Durán, Ricardo G.
Acosta, Gabriel
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
ecuaciones
desigualdades con pesos, divergencia, ecuaciones elípticas, estimaciones a priori
topic Ciencias Exactas
Matemática
ecuaciones
desigualdades con pesos, divergencia, ecuaciones elípticas, estimaciones a priori
dc.description.none.fl_txt_mv Esta tesis se centra en estudiar la desigualdad de Poincaré mejorada con pesos y aplicaciones del Análisis Armónico a las ecuaciones diferenciales. En primer lugar obtenemos un teorema general que nos provee condiciones que deben cumplir dos pesos para que valga la desigualdad de Poincaré mejorada en dominios acotados y de John. Gracias a este teorema podemos proveer varios ejemplos de pesos que no están en la clase de Muckenhoupt Ap, en el caso particular de un peso. Para obtener aplicaciones a las ecuaciones diferenciales estudiamos la descomposición de una función de promedio cero como suma de funciones soportadas en cubos y de promedio cero. Esta descomposición está relacionada con la desigualdad de Poincaré mejorada y nos resultará útil para obtener la resolubilidad de la divergencia en espacios de Sobolev con pesos y así también para probar la desigualdad de Fefferman-Stein con pesos, en ambos casos para una clase de pesos más general que la clase de Muckenhoupt Ap. Damos un teorema general para que valga la resolubilidad de la divergencia en espacios de Sobolev. Por último estudiamos estimaciones a priori de soluciones de sistemas uniformemente elípticos en espacios con pesos en la clase de Muckenhoupt Ap. Damos una prueba más simple de la ya obtenida. Para ello necesitamos utilizar la desigualdad de Fefferman-Stein y una estimación puntual que involucra la función maximal sharp y la función maximal de Hardy-Littlewood. Además obtenemos como depende del peso la constante de las estimaciones a priori y probamos que está constante es sharp. En la línea de los sistemas elípticos obtenemos estimaciones a priori con dos pesos. En el caso particular del problema de Dirichlet para potencias del laplaciano damos una condición necesaria sobre el peso para que valgan las estimaciones a priori.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description Esta tesis se centra en estudiar la desigualdad de Poincaré mejorada con pesos y aplicaciones del Análisis Armónico a las ecuaciones diferenciales. En primer lugar obtenemos un teorema general que nos provee condiciones que deben cumplir dos pesos para que valga la desigualdad de Poincaré mejorada en dominios acotados y de John. Gracias a este teorema podemos proveer varios ejemplos de pesos que no están en la clase de Muckenhoupt Ap, en el caso particular de un peso. Para obtener aplicaciones a las ecuaciones diferenciales estudiamos la descomposición de una función de promedio cero como suma de funciones soportadas en cubos y de promedio cero. Esta descomposición está relacionada con la desigualdad de Poincaré mejorada y nos resultará útil para obtener la resolubilidad de la divergencia en espacios de Sobolev con pesos y así también para probar la desigualdad de Fefferman-Stein con pesos, en ambos casos para una clase de pesos más general que la clase de Muckenhoupt Ap. Damos un teorema general para que valga la resolubilidad de la divergencia en espacios de Sobolev. Por último estudiamos estimaciones a priori de soluciones de sistemas uniformemente elípticos en espacios con pesos en la clase de Muckenhoupt Ap. Damos una prueba más simple de la ya obtenida. Para ello necesitamos utilizar la desigualdad de Fefferman-Stein y una estimación puntual que involucra la función maximal sharp y la función maximal de Hardy-Littlewood. Además obtenemos como depende del peso la constante de las estimaciones a priori y probamos que está constante es sharp. En la línea de los sistemas elípticos obtenemos estimaciones a priori con dos pesos. En el caso particular del problema de Dirichlet para potencias del laplaciano damos una condición necesaria sobre el peso para que valgan las estimaciones a priori.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-12
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/57556
https://doi.org/10.35537/10915/57556
url http://sedici.unlp.edu.ar/handle/10915/57556
https://doi.org/10.35537/10915/57556
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615934851940352
score 13.070432