Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
- Autores
- Baravalle, Román; Rosso, Osvaldo Aníbal; Montani, Fernando Fabián
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Electroencephalography (EEG) signals depict the electrical activity that take place at the surface of the brain, and provide an important tool for understanding a variety of cognitive processes. The EEG are the product of synchronized activity of the brain and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects performs a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H x C, where the enhanced complexity in the gamma 1, gamma 2 and beta 1 bands allow us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2 and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, while in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that corresponds to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks.
Instituto de Física de Líquidos y Sistemas Biológicos - Materia
-
Física
Electroencephalography
Cognitive processes
Rhythmic oscillations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/97725
Ver los metadatos del registro completo
id |
SEDICI_f730a24f0c3a8b1698d6eb2047bf7609 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/97725 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasksBaravalle, RománRosso, Osvaldo AníbalMontani, Fernando FabiánFísicaElectroencephalographyCognitive processesRhythmic oscillationsElectroencephalography (EEG) signals depict the electrical activity that take place at the surface of the brain, and provide an important tool for understanding a variety of cognitive processes. The EEG are the product of synchronized activity of the brain and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects performs a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H x C, where the enhanced complexity in the gamma 1, gamma 2 and beta 1 bands allow us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2 and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, while in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that corresponds to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks.Instituto de Física de Líquidos y Sistemas Biológicos2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf75513-75531http://sedici.unlp.edu.ar/handle/10915/97725enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/87939info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.5025187info:eu-repo/semantics/altIdentifier/issn/1054-1500info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5025187info:eu-repo/semantics/altIdentifier/hdl/11336/87939info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:31Zoai:sedici.unlp.edu.ar:10915/97725Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:32.145SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks |
title |
Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks |
spellingShingle |
Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks Baravalle, Román Física Electroencephalography Cognitive processes Rhythmic oscillations |
title_short |
Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks |
title_full |
Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks |
title_fullStr |
Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks |
title_full_unstemmed |
Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks |
title_sort |
Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks |
dc.creator.none.fl_str_mv |
Baravalle, Román Rosso, Osvaldo Aníbal Montani, Fernando Fabián |
author |
Baravalle, Román |
author_facet |
Baravalle, Román Rosso, Osvaldo Aníbal Montani, Fernando Fabián |
author_role |
author |
author2 |
Rosso, Osvaldo Aníbal Montani, Fernando Fabián |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Física Electroencephalography Cognitive processes Rhythmic oscillations |
topic |
Física Electroencephalography Cognitive processes Rhythmic oscillations |
dc.description.none.fl_txt_mv |
Electroencephalography (EEG) signals depict the electrical activity that take place at the surface of the brain, and provide an important tool for understanding a variety of cognitive processes. The EEG are the product of synchronized activity of the brain and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects performs a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H x C, where the enhanced complexity in the gamma 1, gamma 2 and beta 1 bands allow us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2 and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, while in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that corresponds to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks. Instituto de Física de Líquidos y Sistemas Biológicos |
description |
Electroencephalography (EEG) signals depict the electrical activity that take place at the surface of the brain, and provide an important tool for understanding a variety of cognitive processes. The EEG are the product of synchronized activity of the brain and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects performs a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H x C, where the enhanced complexity in the gamma 1, gamma 2 and beta 1 bands allow us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2 and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, while in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that corresponds to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/97725 |
url |
http://sedici.unlp.edu.ar/handle/10915/97725 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/87939 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.5025187 info:eu-repo/semantics/altIdentifier/issn/1054-1500 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5025187 info:eu-repo/semantics/altIdentifier/hdl/11336/87939 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 75513-75531 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616080167796736 |
score |
13.070432 |