Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks

Autores
Baravalle, Román; Rosso, Osvaldo Aníbal; Montani, Fernando Fabián
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electroencephalography (EEG) signals depict the electrical activity that take place at the surface of the brain, and provide an important tool for understanding a variety of cognitive processes. The EEG are the product of synchronized activity of the brain and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects performs a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H x C, where the enhanced complexity in the gamma 1, gamma 2 and beta 1 bands allow us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2 and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, while in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that corresponds to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks.
Fil: Baravalle, Román. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Materia
EEG
Rhythmic oscillations
Synchronized activity
Causality entropy-complexity plane
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87939

id CONICETDig_945e82f9ba6c8711afe7d8f712e22fe0
oai_identifier_str oai:ri.conicet.gov.ar:11336/87939
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasksBaravalle, RománRosso, Osvaldo AníbalMontani, Fernando FabiánEEGRhythmic oscillationsSynchronized activityCausality entropy-complexity planehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Electroencephalography (EEG) signals depict the electrical activity that take place at the surface of the brain, and provide an important tool for understanding a variety of cognitive processes. The EEG are the product of synchronized activity of the brain and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects performs a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H x C, where the enhanced complexity in the gamma 1, gamma 2 and beta 1 bands allow us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2 and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, while in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that corresponds to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks.Fil: Baravalle, Román. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaAmerican Institute of Physics2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87939Baravalle, Román; Rosso, Osvaldo Aníbal; Montani, Fernando Fabián; Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks; American Institute of Physics; Chaos; 28; 7-2018; 75513-755311054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.5025187info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5025187info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:45Zoai:ri.conicet.gov.ar:11336/87939instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:45.869CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
title Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
spellingShingle Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
Baravalle, Román
EEG
Rhythmic oscillations
Synchronized activity
Causality entropy-complexity plane
title_short Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
title_full Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
title_fullStr Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
title_full_unstemmed Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
title_sort Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks
dc.creator.none.fl_str_mv Baravalle, Román
Rosso, Osvaldo Aníbal
Montani, Fernando Fabián
author Baravalle, Román
author_facet Baravalle, Román
Rosso, Osvaldo Aníbal
Montani, Fernando Fabián
author_role author
author2 Rosso, Osvaldo Aníbal
Montani, Fernando Fabián
author2_role author
author
dc.subject.none.fl_str_mv EEG
Rhythmic oscillations
Synchronized activity
Causality entropy-complexity plane
topic EEG
Rhythmic oscillations
Synchronized activity
Causality entropy-complexity plane
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Electroencephalography (EEG) signals depict the electrical activity that take place at the surface of the brain, and provide an important tool for understanding a variety of cognitive processes. The EEG are the product of synchronized activity of the brain and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects performs a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H x C, where the enhanced complexity in the gamma 1, gamma 2 and beta 1 bands allow us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2 and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, while in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that corresponds to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks.
Fil: Baravalle, Román. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Rosso, Osvaldo Aníbal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
description Electroencephalography (EEG) signals depict the electrical activity that take place at the surface of the brain, and provide an important tool for understanding a variety of cognitive processes. The EEG are the product of synchronized activity of the brain and variations in EEG oscillations patterns reflect the underlying changes in neuronal synchrony. Our aim is to characterize the complexity of the EEG rhythmic oscillations bands when the subjects performs a visuomotor or imagined cognitive tasks (imagined movement), providing a causal mapping of the dynamical rhythmic activities of the brain as a measure of attentional investment. We estimate the intrinsic correlational structure of the signals within the causality entropy-complexity plane H x C, where the enhanced complexity in the gamma 1, gamma 2 and beta 1 bands allow us to distinguish motor-visual memory tasks from control conditions. We identify the dynamics of the gamma 1, gamma 2 and beta 1 rhythmic oscillations within the zone of a chaotic dissipative behavior, while in contrast the beta 2 band shows a much higher level of entropy and a significant low level of complexity that corresponds to a non-invertible cubic map. Our findings enhance the importance of the gamma band during attention in perceptual feature binding during the visuomotor/imagery tasks.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87939
Baravalle, Román; Rosso, Osvaldo Aníbal; Montani, Fernando Fabián; Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks; American Institute of Physics; Chaos; 28; 7-2018; 75513-75531
1054-1500
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87939
identifier_str_mv Baravalle, Román; Rosso, Osvaldo Aníbal; Montani, Fernando Fabián; Rhythmic activities of the brain: quantifying the high complexity of beta and gamma oscillations during visuomotor tasks; American Institute of Physics; Chaos; 28; 7-2018; 75513-75531
1054-1500
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/abs/10.1063/1.5025187
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5025187
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613679312535552
score 13.070432