Multiparameter quantum groups, bosonizations and cocycle deformations

Autores
García, Gastón Andrés
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The result is applied to show that under a certain assumption Uq(gA) depends, up to cocycle deformation, on only one parameter in each connected component of the associated Dynkin diagram. In the special case that gA is simple, this was already shown by Pei, Hu and Rosso in an alternative way.
Facultad de Ciencias Exactas
Consejo Nacional de Investigaciones Científicas y Técnicas
Materia
Matemática
Quantum groups
Bosonizations
Cocycle deformation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/95938

id SEDICI_f6c0cb9da07f40f4a19c2fb35b069846
oai_identifier_str oai:sedici.unlp.edu.ar:10915/95938
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Multiparameter quantum groups, bosonizations and cocycle deformationsGarcía, Gastón AndrésMatemáticaQuantum groupsBosonizationsCocycle deformationThe multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The result is applied to show that under a certain assumption Uq(gA) depends, up to cocycle deformation, on only one parameter in each connected component of the associated Dynkin diagram. In the special case that gA is simple, this was already shown by Pei, Hu and Rosso in an alternative way.Facultad de Ciencias ExactasConsejo Nacional de Investigaciones Científicas y Técnicas2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-23http://sedici.unlp.edu.ar/handle/10915/95938enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/66719info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1406.2561info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n2/v57n2a01.pdfinfo:eu-repo/semantics/altIdentifier/arxiv/1406.2561info:eu-repo/semantics/altIdentifier/hdl/11336/66719info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:20Zoai:sedici.unlp.edu.ar:10915/95938Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:21.065SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Multiparameter quantum groups, bosonizations and cocycle deformations
title Multiparameter quantum groups, bosonizations and cocycle deformations
spellingShingle Multiparameter quantum groups, bosonizations and cocycle deformations
García, Gastón Andrés
Matemática
Quantum groups
Bosonizations
Cocycle deformation
title_short Multiparameter quantum groups, bosonizations and cocycle deformations
title_full Multiparameter quantum groups, bosonizations and cocycle deformations
title_fullStr Multiparameter quantum groups, bosonizations and cocycle deformations
title_full_unstemmed Multiparameter quantum groups, bosonizations and cocycle deformations
title_sort Multiparameter quantum groups, bosonizations and cocycle deformations
dc.creator.none.fl_str_mv García, Gastón Andrés
author García, Gastón Andrés
author_facet García, Gastón Andrés
author_role author
dc.subject.none.fl_str_mv Matemática
Quantum groups
Bosonizations
Cocycle deformation
topic Matemática
Quantum groups
Bosonizations
Cocycle deformation
dc.description.none.fl_txt_mv The multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The result is applied to show that under a certain assumption Uq(gA) depends, up to cocycle deformation, on only one parameter in each connected component of the associated Dynkin diagram. In the special case that gA is simple, this was already shown by Pei, Hu and Rosso in an alternative way.
Facultad de Ciencias Exactas
Consejo Nacional de Investigaciones Científicas y Técnicas
description The multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The result is applied to show that under a certain assumption Uq(gA) depends, up to cocycle deformation, on only one parameter in each connected component of the associated Dynkin diagram. In the special case that gA is simple, this was already shown by Pei, Hu and Rosso in an alternative way.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/95938
url http://sedici.unlp.edu.ar/handle/10915/95938
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/66719
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1406.2561
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n2/v57n2a01.pdf
info:eu-repo/semantics/altIdentifier/arxiv/1406.2561
info:eu-repo/semantics/altIdentifier/hdl/11336/66719
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1-23
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616077784383488
score 13.070432