Multiparameter quantum groups, bosonizations and cocycle deformations

Autores
García, Gastón Andrés
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The result is applied to show that under a certain assumption Uq(gA) depends, up to cocycle deformation, on only one parameter in each connected component of the associated Dynkin diagram. In the special case that gA is simple, this was already shown by Pei, Hu and Rosso in an alternative way.
Fil: García, Gastón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Cientifíca y Tecnológica; Argentina. Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni; Italia
Materia
QUANTUM GROUPS
BOSONIZATIONS
COCYCLE DEFORMATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/66719

id CONICETDig_8ee7959c0bae39e7174c12693cfcc06f
oai_identifier_str oai:ri.conicet.gov.ar:11336/66719
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multiparameter quantum groups, bosonizations and cocycle deformationsGarcía, Gastón AndrésQUANTUM GROUPSBOSONIZATIONSCOCYCLE DEFORMATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The result is applied to show that under a certain assumption Uq(gA) depends, up to cocycle deformation, on only one parameter in each connected component of the associated Dynkin diagram. In the special case that gA is simple, this was already shown by Pei, Hu and Rosso in an alternative way.Fil: García, Gastón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Cientifíca y Tecnológica; Argentina. Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni; ItaliaUnión Matemática Argentina2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66719García, Gastón Andrés; Multiparameter quantum groups, bosonizations and cocycle deformations; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 12-2017; 1-230041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1406.2561info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n2/v57n2a01.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:59Zoai:ri.conicet.gov.ar:11336/66719instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:59.973CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multiparameter quantum groups, bosonizations and cocycle deformations
title Multiparameter quantum groups, bosonizations and cocycle deformations
spellingShingle Multiparameter quantum groups, bosonizations and cocycle deformations
García, Gastón Andrés
QUANTUM GROUPS
BOSONIZATIONS
COCYCLE DEFORMATION
title_short Multiparameter quantum groups, bosonizations and cocycle deformations
title_full Multiparameter quantum groups, bosonizations and cocycle deformations
title_fullStr Multiparameter quantum groups, bosonizations and cocycle deformations
title_full_unstemmed Multiparameter quantum groups, bosonizations and cocycle deformations
title_sort Multiparameter quantum groups, bosonizations and cocycle deformations
dc.creator.none.fl_str_mv García, Gastón Andrés
author García, Gastón Andrés
author_facet García, Gastón Andrés
author_role author
dc.subject.none.fl_str_mv QUANTUM GROUPS
BOSONIZATIONS
COCYCLE DEFORMATION
topic QUANTUM GROUPS
BOSONIZATIONS
COCYCLE DEFORMATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The result is applied to show that under a certain assumption Uq(gA) depends, up to cocycle deformation, on only one parameter in each connected component of the associated Dynkin diagram. In the special case that gA is simple, this was already shown by Pei, Hu and Rosso in an alternative way.
Fil: García, Gastón Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Cientifíca y Tecnológica; Argentina. Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni; Italia
description The multiparameter quantized enveloping algebras Uq(gA) constructed by Pei, Hu and Rosso [Quantum affine algebras, extended affine Lie algebras, and their applications, 145–171, Amer. Math. Soc., Providence, 2010] are presented as the pointed Hopf algebras Ue(Dred, `) defined by Andruskiewitsch and Schneider [Ann. of Math. (2) 171 (2010), 375–417]. The result is applied to show that under a certain assumption Uq(gA) depends, up to cocycle deformation, on only one parameter in each connected component of the associated Dynkin diagram. In the special case that gA is simple, this was already shown by Pei, Hu and Rosso in an alternative way.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/66719
García, Gastón Andrés; Multiparameter quantum groups, bosonizations and cocycle deformations; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 12-2017; 1-23
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/66719
identifier_str_mv García, Gastón Andrés; Multiparameter quantum groups, bosonizations and cocycle deformations; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 57; 2; 12-2017; 1-23
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol57
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1406.2561
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v57n2/v57n2a01.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614463856050176
score 13.070432