Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce
- Autores
- Concilio, Germán M.; Calot, Enrique; Ierache, Jorge Salvador; Merlino, Hernán
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Keystroke dynamics is a biometric technique to identify users based on analysing habitual rhythm patterns in their typing behaviour. In e-commerce, this technique brings benefits to both security and the analysis of patterns of consumer behaviour. This paper focuses on analysing the keystroke dynamics against an e-commerce site for personal identification. This paper is an empirical reinforcement of previous works, with data extracted from realistic conditions that are of most interest for the practical application of modelling keystroke dynamics in free texts. It was a collaborative work with one of the leading e-commerce companies in Latin America. Experimental results showed that it was possible to identify typists with an accuracy of 89% from a sampling of 300 randomly selected users just by reading comment field keystrokes.
VII Workshop Seguridad Informática (WSI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
keystroke dynamics
biometrics
e-commerce
user identification
user classification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/73628
Ver los metadatos del registro completo
id |
SEDICI_f35f0877151d8b37e4253172311cf7a7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/73628 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerceConcilio, Germán M.Calot, EnriqueIerache, Jorge SalvadorMerlino, HernánCiencias Informáticaskeystroke dynamicsbiometricse-commerceuser identificationuser classificationKeystroke dynamics is a biometric technique to identify users based on analysing habitual rhythm patterns in their typing behaviour. In e-commerce, this technique brings benefits to both security and the analysis of patterns of consumer behaviour. This paper focuses on analysing the keystroke dynamics against an e-commerce site for personal identification. This paper is an empirical reinforcement of previous works, with data extracted from realistic conditions that are of most interest for the practical application of modelling keystroke dynamics in free texts. It was a collaborative work with one of the leading e-commerce companies in Latin America. Experimental results showed that it was possible to identify typists with an accuracy of 89% from a sampling of 300 randomly selected users just by reading comment field keystrokes.VII Workshop Seguridad Informática (WSI)Red de Universidades con Carreras en Informática (RedUNCI)2018-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1051-1059http://sedici.unlp.edu.ar/handle/10915/73628enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-658-472-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:44:34Zoai:sedici.unlp.edu.ar:10915/73628Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:44:34.623SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce |
title |
Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce |
spellingShingle |
Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce Concilio, Germán M. Ciencias Informáticas keystroke dynamics biometrics e-commerce user identification user classification |
title_short |
Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce |
title_full |
Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce |
title_fullStr |
Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce |
title_full_unstemmed |
Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce |
title_sort |
Application of Keystroke Dynamics Modelling Techniques to Strengthen the User Identification in the Context of E-commerce |
dc.creator.none.fl_str_mv |
Concilio, Germán M. Calot, Enrique Ierache, Jorge Salvador Merlino, Hernán |
author |
Concilio, Germán M. |
author_facet |
Concilio, Germán M. Calot, Enrique Ierache, Jorge Salvador Merlino, Hernán |
author_role |
author |
author2 |
Calot, Enrique Ierache, Jorge Salvador Merlino, Hernán |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas keystroke dynamics biometrics e-commerce user identification user classification |
topic |
Ciencias Informáticas keystroke dynamics biometrics e-commerce user identification user classification |
dc.description.none.fl_txt_mv |
Keystroke dynamics is a biometric technique to identify users based on analysing habitual rhythm patterns in their typing behaviour. In e-commerce, this technique brings benefits to both security and the analysis of patterns of consumer behaviour. This paper focuses on analysing the keystroke dynamics against an e-commerce site for personal identification. This paper is an empirical reinforcement of previous works, with data extracted from realistic conditions that are of most interest for the practical application of modelling keystroke dynamics in free texts. It was a collaborative work with one of the leading e-commerce companies in Latin America. Experimental results showed that it was possible to identify typists with an accuracy of 89% from a sampling of 300 randomly selected users just by reading comment field keystrokes. VII Workshop Seguridad Informática (WSI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Keystroke dynamics is a biometric technique to identify users based on analysing habitual rhythm patterns in their typing behaviour. In e-commerce, this technique brings benefits to both security and the analysis of patterns of consumer behaviour. This paper focuses on analysing the keystroke dynamics against an e-commerce site for personal identification. This paper is an empirical reinforcement of previous works, with data extracted from realistic conditions that are of most interest for the practical application of modelling keystroke dynamics in free texts. It was a collaborative work with one of the leading e-commerce companies in Latin America. Experimental results showed that it was possible to identify typists with an accuracy of 89% from a sampling of 300 randomly selected users just by reading comment field keystrokes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/73628 |
url |
http://sedici.unlp.edu.ar/handle/10915/73628 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-658-472-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1051-1059 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260317141204992 |
score |
13.13397 |