User clustering based on keystroke dynamics
- Autores
- Bertacchini, Maximiliano; Benitez, Carlos; Fierens, Pablo I.
- Año de publicación
- 2010
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The PAM clustering algorithm is applied on the Si6 keystroke dataset in order to identify sessions of the same users. A number of heuristical outlier lters based on statistical properties of keystroke latencies are proposed and run on the dataset. Di erent tests are performed varying the number of digraphs that compose each observation and its dimensionality, in order to verify the assumption that more data gives a better quality of clustering and to estimate the minimum required number of dimensions. The number of clusters is estimated through the silhouette algorithm. Resulting clustering accuracy is measured by means of the F-measure, showing the viability of user identi cation through keystroke analysis.
Presentado en el V Workshop Arquitectura, Redes y Sistemas Operativos (WARSO)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
System architectures
sistema operativo
keystroke
clustering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/19359
Ver los metadatos del registro completo
id |
SEDICI_9925aab6ffa6051b559644004c3c5568 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/19359 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
User clustering based on keystroke dynamicsBertacchini, MaximilianoBenitez, CarlosFierens, Pablo I.Ciencias InformáticasSystem architecturessistema operativokeystrokeclusteringThe PAM clustering algorithm is applied on the Si6 keystroke dataset in order to identify sessions of the same users. A number of heuristical outlier lters based on statistical properties of keystroke latencies are proposed and run on the dataset. Di erent tests are performed varying the number of digraphs that compose each observation and its dimensionality, in order to verify the assumption that more data gives a better quality of clustering and to estimate the minimum required number of dimensions. The number of clusters is estimated through the silhouette algorithm. Resulting clustering accuracy is measured by means of the F-measure, showing the viability of user identi cation through keystroke analysis.Presentado en el V Workshop Arquitectura, Redes y Sistemas Operativos (WARSO)Red de Universidades con Carreras en Informática (RedUNCI)2010-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf832-841http://sedici.unlp.edu.ar/handle/10915/19359spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:35:26Zoai:sedici.unlp.edu.ar:10915/19359Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:35:26.86SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
User clustering based on keystroke dynamics |
title |
User clustering based on keystroke dynamics |
spellingShingle |
User clustering based on keystroke dynamics Bertacchini, Maximiliano Ciencias Informáticas System architectures sistema operativo keystroke clustering |
title_short |
User clustering based on keystroke dynamics |
title_full |
User clustering based on keystroke dynamics |
title_fullStr |
User clustering based on keystroke dynamics |
title_full_unstemmed |
User clustering based on keystroke dynamics |
title_sort |
User clustering based on keystroke dynamics |
dc.creator.none.fl_str_mv |
Bertacchini, Maximiliano Benitez, Carlos Fierens, Pablo I. |
author |
Bertacchini, Maximiliano |
author_facet |
Bertacchini, Maximiliano Benitez, Carlos Fierens, Pablo I. |
author_role |
author |
author2 |
Benitez, Carlos Fierens, Pablo I. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas System architectures sistema operativo keystroke clustering |
topic |
Ciencias Informáticas System architectures sistema operativo keystroke clustering |
dc.description.none.fl_txt_mv |
The PAM clustering algorithm is applied on the Si6 keystroke dataset in order to identify sessions of the same users. A number of heuristical outlier lters based on statistical properties of keystroke latencies are proposed and run on the dataset. Di erent tests are performed varying the number of digraphs that compose each observation and its dimensionality, in order to verify the assumption that more data gives a better quality of clustering and to estimate the minimum required number of dimensions. The number of clusters is estimated through the silhouette algorithm. Resulting clustering accuracy is measured by means of the F-measure, showing the viability of user identi cation through keystroke analysis. Presentado en el V Workshop Arquitectura, Redes y Sistemas Operativos (WARSO) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The PAM clustering algorithm is applied on the Si6 keystroke dataset in order to identify sessions of the same users. A number of heuristical outlier lters based on statistical properties of keystroke latencies are proposed and run on the dataset. Di erent tests are performed varying the number of digraphs that compose each observation and its dimensionality, in order to verify the assumption that more data gives a better quality of clustering and to estimate the minimum required number of dimensions. The number of clusters is estimated through the silhouette algorithm. Resulting clustering accuracy is measured by means of the F-measure, showing the viability of user identi cation through keystroke analysis. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/19359 |
url |
http://sedici.unlp.edu.ar/handle/10915/19359 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 832-841 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846782800934469632 |
score |
12.982451 |